These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 37329044)
1. Delayed Hopf bifurcation and control of a ferrofluid interface via a time-dependent magnetic field. Yu Z; Christov IC Phys Rev E; 2023 May; 107(5-2):055102. PubMed ID: 37329044 [TBL] [Abstract][Full Text] [Related]
2. Tuning a magnetic field to generate spinning ferrofluid droplets with controllable speed via nonlinear periodic interfacial waves. Yu Z; Christov IC Phys Rev E; 2021 Jan; 103(1-1):013103. PubMed ID: 33601568 [TBL] [Abstract][Full Text] [Related]
3. Shape instabilities in confined ferrofluids under crossed magnetic fields. Oliveira RM; Coutinho ÍM; Anjos PHA; Miranda JA Phys Rev E; 2021 Dec; 104(6-2):065113. PubMed ID: 35030845 [TBL] [Abstract][Full Text] [Related]
4. Nonlinear traveling waves in confined ferrofluids. Lira SA; Miranda JA Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056301. PubMed ID: 23214870 [TBL] [Abstract][Full Text] [Related]
5. Two-parameter bifurcations analysis of a delayed high-temperature superconducting maglev model with guidance force. Dai Q Chaos; 2022 Aug; 32(8):083128. PubMed ID: 36049934 [TBL] [Abstract][Full Text] [Related]
6. Global dynamics of an immunosuppressive infection model with stage structure. Shu HY; Xu WX; Hao ZH Math Biosci Eng; 2020 Jan; 17(3):2082-2102. PubMed ID: 32233525 [TBL] [Abstract][Full Text] [Related]
7. Multiple bifurcations and coexistence in an inertial two-neuron system with multiple delays. Song Z; Zhen B; Hu D Cogn Neurodyn; 2020 Jun; 14(3):359-374. PubMed ID: 32399077 [TBL] [Abstract][Full Text] [Related]
8. Bifurcation analysis of a normal form for excitable media: are stable dynamical alternans on a ring possible? Gottwald GA Chaos; 2008 Mar; 18(1):013129. PubMed ID: 18377080 [TBL] [Abstract][Full Text] [Related]
9. Hopf bifurcation of an (n + 1) -neuron bidirectional associative memory neural network model with delays. Xiao M; Zheng WX; Cao J IEEE Trans Neural Netw Learn Syst; 2013 Jan; 24(1):118-32. PubMed ID: 24808212 [TBL] [Abstract][Full Text] [Related]
10. Ferrofluid patterns in a radial magnetic field: linear stability, nonlinear dynamics, and exact solutions. Oliveira RM; Miranda JA; Leandro ES Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 2):016304. PubMed ID: 18351931 [TBL] [Abstract][Full Text] [Related]
11. Bifurcation structure of two coupled FHN neurons with delay. Farajzadeh Tehrani N; Razvan M Math Biosci; 2015 Dec; 270(Pt A):41-56. PubMed ID: 26476143 [TBL] [Abstract][Full Text] [Related]
12. Ferrofluid annulus in crossed magnetic fields. Livera POS; Anjos PHA; Miranda JA Phys Rev E; 2022 Apr; 105(4-2):045106. PubMed ID: 35590587 [TBL] [Abstract][Full Text] [Related]
13. Feedback control of unstable periodic orbits in equivariant Hopf bifurcation problems. Postlethwaite CM; Brown G; Silber M Philos Trans A Math Phys Eng Sci; 2013 Sep; 371(1999):20120467. PubMed ID: 23960225 [TBL] [Abstract][Full Text] [Related]
14. Weakly nonlinear study of normal-field instability in confined ferrofluids. Lira SA; Miranda JA Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):016303. PubMed ID: 21867300 [TBL] [Abstract][Full Text] [Related]
15. Magnetically induced interfacial instabilities in a ferrofluid annulus. Livera POS; Anjos PHA; Miranda JA Phys Rev E; 2021 Dec; 104(6-2):065103. PubMed ID: 35030922 [TBL] [Abstract][Full Text] [Related]
16. Hopf bifurcation to square-wave switching in mutually coupled semiconductor lasers. Sciamanna M; Virte M; Masoller C; Gavrielides A Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):016218. PubMed ID: 23005518 [TBL] [Abstract][Full Text] [Related]
17. Hopf bifurcation control in a congestion control model via dynamic delayed feedback. Guo S; Feng G; Liao X; Liu Q Chaos; 2008 Dec; 18(4):043104. PubMed ID: 19123614 [TBL] [Abstract][Full Text] [Related]
18. Ferrofluid patterns in Hele-Shaw cells: Exact, stable, stationary shape solutions. Lira SA; Miranda JA Phys Rev E; 2016 Jan; 93(1):013129. PubMed ID: 26871176 [TBL] [Abstract][Full Text] [Related]
19. Controlling the onset of Hopf bifurcation in the Hodgkin-Huxley model. Xie Y; Chen L; Kang YM; Aihara K Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 1):061921. PubMed ID: 18643314 [TBL] [Abstract][Full Text] [Related]
20. Global Hopf bifurcation of a delayed phytoplankton-zooplankton system considering toxin producing effect and delay dependent coefficient. Jiang ZC; Bi XH; Zhang TQ; Pradeep BGSA Math Biosci Eng; 2019 Apr; 16(5):3807-3829. PubMed ID: 31499637 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]