These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 37329272)
1. Oriented External Electric-Field Effects on the Activation of Aryl CO Bond in Anisole using Rh(PEP) (E=Al, B, Ga) Catalysts. Kuriakose N; Shaik S Chemistry; 2023 Sep; 29(49):e202300977. PubMed ID: 37329272 [TBL] [Abstract][Full Text] [Related]
2. Oriented External Electric Fields: Tweezers and Catalysts for Reactivity in Halogen-Bond Complexes. Wang C; Danovich D; Chen H; Shaik S J Am Chem Soc; 2019 May; 141(17):7122-7136. PubMed ID: 30945542 [TBL] [Abstract][Full Text] [Related]
3. Electric-Field Mediated Chemistry: Uncovering and Exploiting the Potential of (Oriented) Electric Fields to Exert Chemical Catalysis and Reaction Control. Shaik S; Danovich D; Joy J; Wang Z; Stuyver T J Am Chem Soc; 2020 Jul; 142(29):12551-12562. PubMed ID: 32551571 [TBL] [Abstract][Full Text] [Related]
4. Reactivity of the latent 12-electron fragment [Rh(PiBu3)2]+ with aryl bromides: aryl-Br and phosphine ligand C-H activation. Townsend NS; Chaplin AB; Abu Naser M; Thompson AL; Rees NH; Macgregor SA; Weller AS Chemistry; 2010 Jul; 16(28):8376-89. PubMed ID: 20572181 [TBL] [Abstract][Full Text] [Related]
5. Oriented External Electric Fields and Ionic Additives Elicit Catalysis and Mechanistic Crossover in Oxidative Addition Reactions. Joy J; Stuyver T; Shaik S J Am Chem Soc; 2020 Feb; 142(8):3836-3850. PubMed ID: 31994390 [TBL] [Abstract][Full Text] [Related]
6. Oriented External Electric Field Controls the Rupture Forces in Mechanophores. Das A; Datta A J Phys Chem B; 2024 Jul; 128(28):6951-6956. PubMed ID: 38973239 [TBL] [Abstract][Full Text] [Related]
7. Directional Diels-Alder cycloadditions of isoelectronic graphene and hexagonal boron nitride in oriented external electric fields: reaction axis rule vs. polarization axis rule. Wang WW; Wang CW; Zheng JJ; Shang FL; Dang JS; Zhao X Nanoscale; 2020 Jul; 12(28):15364-15370. PubMed ID: 32656551 [TBL] [Abstract][Full Text] [Related]
8. A quantum chemical study of the mechanisms of olefin addition to group 9 transition metal dioxo compounds. Ahmed I; Tia R; Adei E Springerplus; 2016; 5(1):867. PubMed ID: 27386316 [TBL] [Abstract][Full Text] [Related]
9. Cleavage of non-polar C(sp Lin J; Lv Y; Song K; Song X; Zang H; Du P; Zang Y; Zhu D Nat Commun; 2023 Jan; 14(1):293. PubMed ID: 36653339 [TBL] [Abstract][Full Text] [Related]
10. Influence of an Oriented External Electric Field on the Mechanism of Double Proton Transfer between Pyrazole and Guanidine: from an Asynchronous Plateau Transition State to a Synchronous or Stepwise Mechanism. Geoffroy-Neveux A; Labet V; Alikhani ME J Phys Chem A; 2022 May; 126(20):3057-3071. PubMed ID: 35544749 [TBL] [Abstract][Full Text] [Related]
11. How Oriented External Electric Fields Modulate Reactivity. Yu S; Vermeeren P; Hamlin TA; Bickelhaupt FM Chemistry; 2021 Mar; 27(18):5683-5693. PubMed ID: 33289179 [TBL] [Abstract][Full Text] [Related]
12. Role of coordination geometry in dictating the barrier to hydride migration in d6 square-pyramidal iridium and rhodium pincer complexes. Findlater M; Cartwright-Sykes A; White PS; Schauer CK; Brookhart M J Am Chem Soc; 2011 Aug; 133(31):12274-84. PubMed ID: 21702471 [TBL] [Abstract][Full Text] [Related]
13. First principles (DFT) characterization of Rh(I) /dppp-catalyzed C-H activation by tandem 1,2-addition/1,4-Rh shift reactions of norbornene to phenylboronic acid. Kantchev EA; Pangestu SR; Zhou F; Sullivan MB; Su HB Chemistry; 2014 Nov; 20(47):15625-34. PubMed ID: 25264169 [TBL] [Abstract][Full Text] [Related]
14. Coordination Flexibility of the Rh(PXP) Complex to NH Li QZ; Hara N; Nakao Y; Sakaki S Inorg Chem; 2020 Nov; 59(21):15862-15876. PubMed ID: 33054207 [TBL] [Abstract][Full Text] [Related]
15. The High-Effective Catalytic Degradation of Benzo[a]pyrene by Mn-Corrolazine Regulated by Oriented External Electric Field: Insight From DFT Study. Long T; Wan H; Zhang J; Wu J; Liang JX; Zhu C Front Chem; 2022; 10():884105. PubMed ID: 35720998 [TBL] [Abstract][Full Text] [Related]
16. Revealing the effect of the oriented external electronic field on the superatom-polymeric Zr Chen J; Yang H; Wang J; Cheng SB Spectrochim Acta A Mol Biomol Spectrosc; 2020 Aug; 237():118400. PubMed ID: 32348920 [TBL] [Abstract][Full Text] [Related]
17. DFT modelling of a diphosphane - N-heterocyclic carbene-Rh(i) pincer complex rearrangement: a computational evaluation of the electronic effects in C-P bond activation. Qin HL; Leng J; Zhang W; Kantchev EAB Dalton Trans; 2018 Feb; 47(8):2662-2669. PubMed ID: 29410986 [TBL] [Abstract][Full Text] [Related]
18. Propene oxidation catalysis and electronic structure of M Zhu B; Ehara M; Sakaki S Phys Chem Chem Phys; 2020 Jun; 22(21):11783-11796. PubMed ID: 32215421 [TBL] [Abstract][Full Text] [Related]
19. Mechanism of Rhodium-Catalyzed C-H Functionalization: Advances in Theoretical Investigation. Qi X; Li Y; Bai R; Lan Y Acc Chem Res; 2017 Nov; 50(11):2799-2808. PubMed ID: 29112396 [TBL] [Abstract][Full Text] [Related]
20. On the Precise and Continuous Regulation of the Superatomic and Spectroscopic Behaviors of the Quasi-Cubic W Duan YJ; Zhao Y; Cheng SB; Wei Q J Phys Chem A; 2022 Jan; 126(1):29-35. PubMed ID: 34941267 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]