These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 37329607)

  • 21. The Concentrations, Sources, Ecological, and Human Health Risk Assessment of Heavy Metals in Roadside Soils of Six Cities in Shanxi Province, China.
    Ma H; Mi M; Wang C; Wu X; Zhen Z
    Environ Toxicol Chem; 2023 Jul; 42(7):1485-1500. PubMed ID: 37097018
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assessment of potentially toxic metal (PTM) pollution in mangrove habitats using biochemical markers: A case study on Avicennia officinalis L. in and around Sundarban, India.
    Bakshi M; Ghosh S; Chakraborty D; Hazra S; Chaudhuri P
    Mar Pollut Bull; 2018 Aug; 133():157-172. PubMed ID: 30041303
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Micro-spatial variation of elemental distribution in estuarine sediment and their accumulation in mangroves of Indian Sundarban.
    Bakshi M; Ram SS; Ghosh S; Chakraborty A; Sudarshan M; Chaudhuri P
    Environ Monit Assess; 2017 May; 189(5):221. PubMed ID: 28425071
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Bioaccumulation and Translocation Characteristics of Heavy Metals in a Soil-Maize System in Reclaimed Land and Surrounding Areas of Typical Vanadium-Titanium Magnetite Tailings].
    Sun HY; Wei XF; Sun XM; Jia FC; Li DJ; Li J
    Huan Jing Ke Xue; 2021 Mar; 42(3):1166-1176. PubMed ID: 33742913
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Spatial Distribution and Sources of Heavy Metals in Soil of a Typical Lead-Zinc Mining Area, Yangshuo].
    Chen M; Pan YX; Huang YX; Wang XT; Zhang RD
    Huan Jing Ke Xue; 2022 Oct; 43(10):4545-4555. PubMed ID: 36224140
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Distribution characteristics and potential ecological risk assessment of heavy metals in soils around Shannan landfill site, Tibet.
    Zhou W; Dan Z; Meng D; Zhou P; Chang K; Zhuoma Q; Wang J; Xu F; Chen G
    Environ Geochem Health; 2023 Feb; 45(2):393-407. PubMed ID: 35962211
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Environmental and Ecological Risk Assessment of Trace Metal Contamination in Mangrove Ecosystems: A Case from Zhangjiangkou Mangrove National Nature Reserve, China.
    Wang J; Du H; Xu Y; Chen K; Liang J; Ke H; Cheng SY; Liu M; Deng H; He T; Wang W; Cai M
    Biomed Res Int; 2016; 2016():2167053. PubMed ID: 27795956
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Status, source, human health risk assessment of potential toxic elements (PTEs), and Pb isotope characteristics in urban surface soil, case study: Arak city, Iran.
    Bineshpour M; Payandeh K; Nazarpour A; Sabzalipour S
    Environ Geochem Health; 2021 Dec; 43(12):4939-4958. PubMed ID: 33210156
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multi-geostatistical analyses of the spatial distribution and source apportionment of potentially toxic elements in urban children's park soils in Pakistan: A risk assessment study.
    Ghani J; Nawab J; Faiq ME; Ullah S; Alam A; Ahmad I; Ali SW; Khan S; Ahmad I; Muhammad A; Ur Rahman SA; Abbas M; Rashid A; Hasan SZ; Hamza A
    Environ Pollut; 2022 Oct; 311():119961. PubMed ID: 35977638
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Potential toxic trace element (PTE) contamination in Baoji urban soil (NW China): spatial distribution, mobility behavior, and health risk.
    Li X; Wu T; Bao H; Liu X; Xu C; Zhao Y; Liu D; Yu H
    Environ Sci Pollut Res Int; 2017 Aug; 24(24):19749-19766. PubMed ID: 28685332
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Potentially toxic elements in weathered waste-rocks of Fushun western opencast mine: distribution, source identification, and contamination assessment.
    Li L; Zhang B; Jiang B; Zhao Y; Qian G; Hu X
    Environ Geochem Health; 2022 Jun; 44(6):1813-1826. PubMed ID: 34839392
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Heavy metal pollution and ecological risk assessment of the paddy soils near a zinc-lead mining area in Hunan.
    Lu S; Wang Y; Teng Y; Yu X
    Environ Monit Assess; 2015 Oct; 187(10):627. PubMed ID: 26373302
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Elucidating of potentially toxic elements contamination in topsoils around a copper smelter: Spatial distribution, partitioning and risk estimation.
    Aminiyan MM; Rahman MM; Rodríguez-Seijo A; Hajiali Begloo R; Cheraghi M; Aminiyan FM
    Environ Geochem Health; 2022 Jun; 44(6):1795-1811. PubMed ID: 34368909
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cadmium, copper, lead and zinc accumulation in wild plant species near a lead smelter.
    Xing W; Liu H; Banet T; Wang H; Ippolito JA; Li L
    Ecotoxicol Environ Saf; 2020 Jul; 198():110683. PubMed ID: 32361499
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chemical speciation and bioavailability of potentially toxic elements in surface sediment from the Huaihe River, Anhui Province, China.
    You M; Hu Y; Meng Y
    Mar Pollut Bull; 2023 Mar; 188():114616. PubMed ID: 36701971
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamics of heavy metals during the development and decomposition of leaves of Avicennia marina and Kandelia obovata in a subtropical mangrove swamp.
    Lang T; Tam NF; Hussain M; Ke X; Wei J; Fu Y; Li M; Huang X; Huang S; Xiong Z; Wu K; Li F; Chen Z; Hu Z; Gao C; Yang Q; Zhou H
    Sci Total Environ; 2023 Jan; 855():158700. PubMed ID: 36113807
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dominant roles of torrential floods and atmospheric deposition revealed by quantitative source apportionment of potentially toxic elements in agricultural soils around a historical mercury mine, Southwest China.
    Liu B; Tian K; He Y; Hu W; Huang B; Zhang X; Zhao L; Teng Y
    Ecotoxicol Environ Saf; 2022 Sep; 242():113854. PubMed ID: 35816843
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of conversion of mangroves into gei wai ponds on accumulation, speciation and risk of heavy metals in intertidal sediments.
    Li R; Qiu GY; Chai M; Shen X; Zan Q
    Environ Geochem Health; 2019 Feb; 41(1):159-174. PubMed ID: 29936672
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characteristics and source analysis of potentially toxic elements pollution in atmospheric fallout around non-ferrous metal smelting slag sites-taking southwest China as an example.
    Luo Y; Wang Z; Zhang ZL; Huang FY; Jia WJ; Zhang JQ; Feng XY
    Environ Sci Pollut Res Int; 2023 Jan; 30(3):7813-7824. PubMed ID: 36044134
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Source identification of eight heavy metals in grassland soils by multivariate analysis from the Baicheng-Songyuan area, Jilin Province, Northeast China.
    Chai Y; Guo J; Chai S; Cai J; Xue L; Zhang Q
    Chemosphere; 2015 Sep; 134():67-75. PubMed ID: 25911049
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.