BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 37329673)

  • 1. The non-affine fiber network solver: A multiscale fiber network material model for finite-element analysis.
    Mahutga RR; Barocas VH; Alford PW
    J Mech Behav Biomed Mater; 2023 Aug; 144():105967. PubMed ID: 37329673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A systematic comparison between FEBio and PolyFEM for biomechanical systems.
    Martin L; Jain P; Ferguson Z; Gholamalizadeh T; Moshfeghifar F; Erleben K; Panozzo D; Abramowitch S; Schneider T
    Comput Methods Programs Biomed; 2024 Feb; 244():107938. PubMed ID: 38056313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation of planar soft tissues using a structural constitutive model: Finite element implementation and validation.
    Fan R; Sacks MS
    J Biomech; 2014 Jun; 47(9):2043-54. PubMed ID: 24746842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A computational framework for biomaterials containing three-dimensional random fiber networks based on the affine kinematics.
    Jin T
    Biomech Model Mechanobiol; 2022 Apr; 21(2):685-708. PubMed ID: 35084592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FEBio: finite elements for biomechanics.
    Maas SA; Ellis BJ; Ateshian GA; Weiss JA
    J Biomech Eng; 2012 Jan; 134(1):011005. PubMed ID: 22482660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiscale model predicts tissue-level failure from collagen fiber-level damage.
    Hadi MF; Sander EA; Barocas VH
    J Biomech Eng; 2012 Sep; 134(9):091005. PubMed ID: 22938372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A three-scale finite element investigation into the effects of tissue mineralisation and lamellar organisation in human cortical and trabecular bone.
    Vaughan TJ; McCarthy CT; McNamara LM
    J Mech Behav Biomed Mater; 2012 Aug; 12():50-62. PubMed ID: 22659366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Implementing a micromechanical model into a finite element code to simulate the mechanical and microstructural response of arteries.
    Bianchi D; Morin C; Badel P
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2553-2566. PubMed ID: 32607921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Histology-informed multiscale modeling of human brain white matter.
    Saeidi S; Kainz MP; Dalbosco M; Terzano M; Holzapfel GA
    Sci Rep; 2023 Nov; 13(1):19641. PubMed ID: 37949949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fiber engagement accounts for geometry-dependent annulus fibrosus mechanics: A multiscale, Structure-Based Finite Element Study.
    Zhou M; Werbner B; O'Connell GD
    J Mech Behav Biomed Mater; 2021 Mar; 115():104292. PubMed ID: 33453608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anisotropic damage model for collagenous tissues and its application to model fracture and needle insertion mechanics.
    Toaquiza Tubon JD; Moreno-Flores O; Sree VD; Tepole AB
    Biomech Model Mechanobiol; 2022 Dec; 21(6):1-16. PubMed ID: 36057750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiscale damage and strength of lamellar bone modeled by cohesive finite elements.
    Hamed E; Jasiuk I
    J Mech Behav Biomed Mater; 2013 Dec; 28():94-110. PubMed ID: 23973769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of patellofemoral joint kinematics and contact through co-simulation of rigid body dynamics and nonlinear finite element analysis.
    Müller JH; Razu S; Erdemir A; Guess TM
    Comput Methods Biomech Biomed Engin; 2020 Aug; 23(11):718-733. PubMed ID: 32379505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical simulation of fibrous biomaterials with randomly distributed fiber network structure.
    Jin T; Stanciulescu I
    Biomech Model Mechanobiol; 2016 Aug; 15(4):817-30. PubMed ID: 26342926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A general framework for application of prestrain to computational models of biological materials.
    Maas SA; Erdemir A; Halloran JP; Weiss JA
    J Mech Behav Biomed Mater; 2016 Aug; 61():499-510. PubMed ID: 27131609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Implementation and validation of finite element model of skull deformation and failure response during uniaxial compression.
    Alexander SL; Weerasooriya T
    J Mech Behav Biomed Mater; 2021 Mar; 115():104302. PubMed ID: 33476873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Plugin Framework for Extending the Simulation Capabilities of FEBio.
    Maas SA; LaBelle SA; Ateshian GA; Weiss JA
    Biophys J; 2018 Nov; 115(9):1630-1637. PubMed ID: 30297132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microstructure-based finite element model of left ventricle passive inflation.
    Xi C; Kassab GS; Lee LC
    Acta Biomater; 2019 May; 90():241-253. PubMed ID: 30980939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How to implement user-defined fiber-reinforced hyperelastic materials in finite element software.
    Fehervary H; Maes L; Vastmans J; Kloosterman G; Famaey N
    J Mech Behav Biomed Mater; 2020 Oct; 110():103737. PubMed ID: 32771879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microscale fiber network alignment affects macroscale failure behavior in simulated collagen tissue analogs.
    Hadi MF; Barocas VH
    J Biomech Eng; 2013 Feb; 135(2):021026. PubMed ID: 23445071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.