These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 37329739)

  • 21. Pushing the limit: Resilience of an Arctic copepod to environmental fluctuations.
    Kvile KØ; Ashjian C; Feng Z; Zhang J; Ji R
    Glob Chang Biol; 2018 Nov; 24(11):5426-5439. PubMed ID: 30099832
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hydroids (Cnidaria, Hydrozoa) from Mauritanian Coral Mounds.
    Gil M; Ramil F; AgÍs JA
    Zootaxa; 2020 Nov; 4878(3):zootaxa.4878.3.2. PubMed ID: 33311142
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Can a key boreal Calanus copepod species now complete its life-cycle in the Arctic? Evidence and implications for Arctic food-webs.
    Tarling GA; Freer JJ; Banas NS; Belcher A; Blackwell M; Castellani C; Cook KB; Cottier FR; Daase M; Johnson ML; Last KS; Lindeque PK; Mayor DJ; Mitchell E; Parry HE; Speirs DC; Stowasser G; Wootton M
    Ambio; 2022 Feb; 51(2):333-344. PubMed ID: 34845624
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Seasonal changes in the abundance and biomass of copepods in the south-eastern Baltic Sea in 2010 and 2011.
    Dzierzbicka-Glowacka L; Lemieszek A; Kalarus M; Griniene E
    PeerJ; 2018; 6():e5562. PubMed ID: 30210945
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Discriminating zooplankton assemblages in neritic and oceanic waters: a case for the northeast coast of India, Bay of Bengal.
    Rakhesh M; Raman AV; Sudarsan D
    Mar Environ Res; 2006 Feb; 61(1):93-109. PubMed ID: 16125769
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Climate impact on plankton ecosystems in the Northeast Atlantic.
    Richardson AJ; Schoeman DS
    Science; 2004 Sep; 305(5690):1609-12. PubMed ID: 15361622
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Warming of Subarctic waters accelerates development of a key marine zooplankton Calanus finmarchicus.
    Weydmann A; Walczowski W; Carstensen J; Kwaśniewski S
    Glob Chang Biol; 2018 Jan; 24(1):172-183. PubMed ID: 28801968
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spatio-temporal variability of the North Sea cod recruitment in relation to temperature and zooplankton.
    Nicolas D; Rochette S; Llope M; Licandro P
    PLoS One; 2014; 9(2):e88447. PubMed ID: 24551103
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Indicator Properties of Baltic Zooplankton for Classification of Environmental Status within Marine Strategy Framework Directive.
    Gorokhova E; Lehtiniemi M; Postel L; Rubene G; Amid C; Lesutiene J; Uusitalo L; Strake S; Demereckiene N
    PLoS One; 2016; 11(7):e0158326. PubMed ID: 27410261
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Remote sensing of zooplankton swarms.
    Basedow SL; McKee D; Lefering I; Gislason A; Daase M; Trudnowska E; Egeland ES; Choquet M; Falk-Petersen S
    Sci Rep; 2019 Jan; 9(1):686. PubMed ID: 30679810
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Feeding on dispersed vs. aggregated particles: The effect of zooplankton feeding behavior on vertical flux.
    Koski M; Boutorh J; de la Rocha C
    PLoS One; 2017; 12(5):e0177958. PubMed ID: 28545095
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of the oxylipin-producing diatom Skeletonema marinoi on gene expression levels of the calanoid copepod Calanus sinicus.
    Lauritano C; Carotenuto Y; Vitiello V; Buttino I; Romano G; Hwang JS; Ianora A
    Mar Genomics; 2015 Dec; 24 Pt 1():89-94. PubMed ID: 25666254
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Climate change affects low trophic level marine consumers: warming decreases copepod size and abundance.
    Garzke J; Ismar SMH; Sommer U
    Oecologia; 2015 Mar; 177(3):849-860. PubMed ID: 25413864
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Extreme temperature impairs growth and productivity in a common tropical marine copepod.
    Doan NX; Vu MTT; Pham HQ; Wisz MS; Nielsen TG; Dinh KV
    Sci Rep; 2019 Mar; 9(1):4550. PubMed ID: 30872725
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spatio-temporal variability of copepod abundance along the 20 °S monitoring transect in the Northern Benguela upwelling system from 2005 to 2011.
    Bode M; Kreiner A; van der Plas AK; Louw DC; Horaeb R; Auel H; Hagen W
    PLoS One; 2014; 9(5):e97738. PubMed ID: 24844305
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of LAS on marine calanoid copepod population dynamics and potential reproduction.
    Christoffersen K; Hansen BW; Johansson LS; Krog E
    Aquat Toxicol; 2003 May; 63(4):405-16. PubMed ID: 12758005
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microplastic ingestion in zooplankton from the Fram Strait in the Arctic.
    Botterell ZLR; Bergmann M; Hildebrandt N; Krumpen T; Steinke M; Thompson RC; Lindeque PK
    Sci Total Environ; 2022 Jul; 831():154886. PubMed ID: 35364160
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Marine biological shifts and climate.
    Beaugrand G; Goberville E; Luczak C; Kirby RR
    Proc Biol Sci; 2014 May; 281(1783):20133350. PubMed ID: 24718760
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multi-decadal range changes vs. thermal adaptation for north east Atlantic oceanic copepods in the face of climate change.
    Hinder SL; Gravenor MB; Edwards M; Ostle C; Bodger OG; Lee PL; Walne AW; Hays GC
    Glob Chang Biol; 2014 Jan; 20(1):140-6. PubMed ID: 24323534
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Climate alters intraspecific variation in copepod effect traits through pond food webs.
    Charette C; Derry AM
    Ecology; 2016 May; 97(5):1239-50. PubMed ID: 27349100
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.