These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 37329761)

  • 1. Machine learning-driven QSAR models for predicting the mixture toxicity of nanoparticles.
    Zhang F; Wang Z; Peijnenburg WJGM; Vijver MG
    Environ Int; 2023 Jul; 177():108025. PubMed ID: 37329761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developing random forest based QSAR models for predicting the mixture toxicity of TiO
    Trinh TX; Seo M; Yoon TH; Kim J
    NanoImpact; 2022 Jan; 25():100383. PubMed ID: 35559889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predictive binary mixture toxicity modeling of fluoroquinolones (FQs) and the projection of toxicity of hypothetical binary FQ mixtures: a combination of 2D-QSAR and machine-learning approaches.
    Chatterjee M; Roy K
    Environ Sci Process Impacts; 2024 Jan; 26(1):105-118. PubMed ID: 38073518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predictive in silico models for aquatic toxicity of cosmetic and personal care additive mixtures.
    Yang YT; Ni HG
    Water Res; 2023 Jun; 236():119981. PubMed ID: 37084578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using experimental data of Escherichia coli to develop a QSAR model for predicting the photo-induced cytotoxicity of metal oxide nanoparticles.
    Pathakoti K; Huang MJ; Watts JD; He X; Hwang HM
    J Photochem Photobiol B; 2014 Jan; 130():234-40. PubMed ID: 24362319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined interaction of fungicides binary mixtures: experimental study and machine learning-driven QSAR modeling.
    Abbod M; Mohammad A
    Sci Rep; 2024 Jun; 14(1):12700. PubMed ID: 38830957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning-based models to predict aquatic ecological risk for engineered nanoparticles: using hazard concentration for 5% of species as an endpoint.
    Qi Q; Wang Z
    Environ Sci Pollut Res Int; 2024 Apr; 31(17):25114-25128. PubMed ID: 38467999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. QSAR models for predicting the toxicity of piperidine derivatives against Aedes aegypti.
    Doucet JP; Papa E; Doucet-Panaye A; Devillers J
    SAR QSAR Environ Res; 2017 Jun; 28(6):451-470. PubMed ID: 28604113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling and mechanistic understanding of cytotoxicity of metal oxide nanoparticles (MeOxNPs) to
    Roy J; Roy K
    Nanotoxicology; 2022 Mar; 16(2):152-164. PubMed ID: 35166631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Do we need different machine learning algorithms for QSAR modeling? A comprehensive assessment of 16 machine learning algorithms on 14 QSAR data sets.
    Wu Z; Zhu M; Kang Y; Leung EL; Lei T; Shen C; Jiang D; Wang Z; Cao D; Hou T
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33313673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine learning predictions of concentration-specific aggregate hazard scores of inorganic nanomaterials in embryonic zebrafish.
    Gousiadou C; Marchese Robinson RL; Kotzabasaki M; Doganis P; Wilkins TA; Jia X; Sarimveis H; Harper SL
    Nanotoxicology; 2021 May; 15(4):446-476. PubMed ID: 33586589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient predictions of cytotoxicity of TiO
    Banerjee A; Kar S; Pore S; Roy K
    Nanotoxicology; 2023 Feb; 17(1):78-93. PubMed ID: 36891579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From basic physics to mechanisms of toxicity: the "liquid drop" approach applied to develop predictive classification models for toxicity of metal oxide nanoparticles.
    Sizochenko N; Rasulev B; Gajewicz A; Kuz'min V; Puzyn T; Leszczynski J
    Nanoscale; 2014 Nov; 6(22):13986-93. PubMed ID: 25317542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine learning and traditional QSAR modeling methods: a case study of known PXR activators.
    Neal WM; Pandey P; Khan SI; Khan IA; Chittiboyina AG
    J Biomol Struct Dyn; 2024; 42(2):903-917. PubMed ID: 37059719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine learning - based q-RASAR modeling to predict acute contact toxicity of binary organic pesticide mixtures in honey bees.
    Chatterjee M; Banerjee A; Tosi S; Carnesecchi E; Benfenati E; Roy K
    J Hazard Mater; 2023 Oct; 460():132358. PubMed ID: 37634379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting the toxicities of metal oxide nanoparticles based on support vector regression with a residual bootstrapping method.
    Zhai X; Chen M; Lu W
    Toxicol Mech Methods; 2018 Jul; 28(6):440-449. PubMed ID: 29644916
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Quantitative structure-activity relationship model for prediction of cardiotoxicity of chemical components in traditional Chinese medicines].
    Beijing Da Xue Xue Bao Yi Xue Ban; 2017 Jun; 49(3):551-556. PubMed ID: 28628163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles.
    Puzyn T; Rasulev B; Gajewicz A; Hu X; Dasari TP; Michalkova A; Hwang HM; Toropov A; Leszczynska D; Leszczynski J
    Nat Nanotechnol; 2011 Mar; 6(3):175-8. PubMed ID: 21317892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combinatorial QSAR of ambergris fragrance compounds.
    Kovatcheva A; Golbraikh A; Oloff S; Xiao YD; Zheng W; Wolschann P; Buchbauer G; Tropsha A
    J Chem Inf Comput Sci; 2004; 44(2):582-95. PubMed ID: 15032539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nano-read-across predictions of toxicity of metal oxide engineered nanoparticles (MeOx ENPS) used in nanopesticides to BEAS-2B and RAW 264.7 cells.
    Roy J; Roy K
    Nanotoxicology; 2022 Jun; 16(5):629-644. PubMed ID: 36260491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.