These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 37329979)

  • 1. Higher Dose Noninvasive Transcutaneous Auricular Vagus Nerve Stimulation Increases Feeding Volumes and White Matter Microstructural Complexity in Open-Label Study of Infants Slated for Gastrostomy Tube.
    Jenkins DD; Moss HG; Adams LE; Hunt S; Dancy M; Huffman SM; Cook D; Jensen JH; Summers P; Thompson S; George MS; Badran BW
    J Pediatr; 2023 Nov; 262():113563. PubMed ID: 37329979
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcutaneous auricular vagus nerve stimulation (taVNS) given for poor feeding in at-risk infants also improves their motor abilities.
    Aljuhani T; Haskin H; Davis S; Reiner A; Moss HG; Badran BW; George MS; Jenkins D; Coker-Bolt P
    J Pediatr Rehabil Med; 2022; 15(3):447-457. PubMed ID: 36093716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcutaneous auricular vagus nerve stimulation may benefit from the addition of N-acetylcysteine to facilitate motor learning in infants of diabetic mothers failing oral feeds.
    Jenkins DD; Garner SS; Brennan A; Morris J; Bonham K; Adams L; Hunt S; Moss H; Badran BW; George MS; Wiest DB
    Front Hum Neurosci; 2024; 18():1373543. PubMed ID: 38841121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcutaneous Auricular Vagus Nerve Stimulation-Paired Rehabilitation for Oromotor Feeding Problems in Newborns: An Open-Label Pilot Study.
    Badran BW; Jenkins DD; Cook D; Thompson S; Dancy M; DeVries WH; Mappin G; Summers P; Bikson M; George MS
    Front Hum Neurosci; 2020; 14():77. PubMed ID: 32256328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of non-invasive transcutaneous auricular vagus nerve stimulation: neurodevelopmental and sensory follow-up.
    Aljuhani T; Coker-Bolt P; Katikaneni L; Ramakrishnan V; Brennan A; George MS; Badran BW; Jenkins D
    Front Hum Neurosci; 2023; 17():1297325. PubMed ID: 38021221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The efficacy and safety of transcutaneous auricular vagus nerve stimulation in patients with mild cognitive impairment: A double blinded randomized clinical trial.
    Wang L; Zhang J; Guo C; He J; Zhang S; Wang Y; Zhao Y; Li L; Wang J; Hou L; Li S; Wang Y; Hao L; Zhao Y; Wu M; Fang J; Rong P
    Brain Stimul; 2022; 15(6):1405-1414. PubMed ID: 36150665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neurophysiologic effects of transcutaneous auricular vagus nerve stimulation (taVNS) via electrical stimulation of the tragus: A concurrent taVNS/fMRI study and review.
    Badran BW; Dowdle LT; Mithoefer OJ; LaBate NT; Coatsworth J; Brown JC; DeVries WH; Austelle CW; McTeague LM; George MS
    Brain Stimul; 2018; 11(3):492-500. PubMed ID: 29361441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigating the Effect of Transcutaneous Auricular Vagus Nerve Stimulation on Cortical Excitability in Healthy Males.
    Mertens A; Carrette S; Klooster D; Lescrauwaet E; Delbeke J; Wadman WJ; Carrette E; Raedt R; Boon P; Vonck K
    Neuromodulation; 2022 Apr; 25(3):395-406. PubMed ID: 35396071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ear your heart: transcutaneous auricular vagus nerve stimulation on heart rate variability in healthy young participants.
    Forte G; Favieri F; Leemhuis E; De Martino ML; Giannini AM; De Gennaro L; Casagrande M; Pazzaglia M
    PeerJ; 2022; 10():e14447. PubMed ID: 36438582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Motor Activated Auricular Vagus Nerve Stimulation as a Potential Neuromodulation Approach for Post-Stroke Motor Rehabilitation: A Pilot Study.
    Badran BW; Peng X; Baker-Vogel B; Hutchison S; Finetto P; Rishe K; Fortune A; Kitchens E; O'Leary GH; Short A; Finetto C; Woodbury ML; Kautz S
    Neurorehabil Neural Repair; 2023 Jun; 37(6):374-383. PubMed ID: 37209010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of transcutaneous auricular vagus nerve stimulation on major depressive disorder: A nonrandomized controlled pilot study.
    Rong P; Liu J; Wang L; Liu R; Fang J; Zhao J; Zhao Y; Wang H; Vangel M; Sun S; Ben H; Park J; Li S; Meng H; Zhu B; Kong J
    J Affect Disord; 2016 May; 195():172-9. PubMed ID: 26896810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcutaneous auricular vagus nerve stimulation enhances short-latency afferent inhibition via central cholinergic system activation.
    Horinouchi T; Nezu T; Saita K; Date S; Kurumadani H; Maruyama H; Kirimoto H
    Sci Rep; 2024 May; 14(1):11224. PubMed ID: 38755234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of transcutaneous auricular vagus nerve stimulation paired with tones on electrophysiological markers of auditory perception.
    Rufener KS; Wienke C; Salanje A; Haghikia A; Zaehle T
    Brain Stimul; 2023; 16(4):982-989. PubMed ID: 37336282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laboratory Administration of Transcutaneous Auricular Vagus Nerve Stimulation (taVNS): Technique, Targeting, and Considerations.
    Badran BW; Yu AB; Adair D; Mappin G; DeVries WH; Jenkins DD; George MS; Bikson M
    J Vis Exp; 2019 Jan; (143):. PubMed ID: 30663712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcutaneous auricular vagus nerve stimulation at 1 Hz modulates locus coeruleus activity and resting state functional connectivity in patients with migraine: An fMRI study.
    Zhang Y; Liu J; Li H; Yan Z; Liu X; Cao J; Park J; Wilson G; Liu B; Kong J
    Neuroimage Clin; 2019; 24():101971. PubMed ID: 31648171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcutaneous Auricular Vagus Nerve Stimulation Combined With Slow Breathing: Speculations on Potential Applications and Technical Considerations.
    Szulczewski MT
    Neuromodulation; 2022 Apr; 25(3):380-394. PubMed ID: 35396070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Short trains of transcutaneous auricular vagus nerve stimulation (taVNS) have parameter-specific effects on heart rate.
    Badran BW; Mithoefer OJ; Summer CE; LaBate NT; Glusman CE; Badran AW; DeVries WH; Summers PM; Austelle CW; McTeague LM; Borckardt JJ; George MS
    Brain Stimul; 2018; 11(4):699-708. PubMed ID: 29716843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Technical Note: Modulation of fMRI brainstem responses by transcutaneous vagus nerve stimulation.
    Borgmann D; Rigoux L; Kuzmanovic B; Edwin Thanarajah S; Münte TF; Fenselau H; Tittgemeyer M
    Neuroimage; 2021 Dec; 244():118566. PubMed ID: 34509623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-resolution computational modeling of the current flow in the outer ear during transcutaneous auricular Vagus Nerve Stimulation (taVNS).
    Kreisberg E; Esmaeilpour Z; Adair D; Khadka N; Datta A; Badran BW; Bremner JD; Bikson M
    Brain Stimul; 2021; 14(6):1419-1430. PubMed ID: 34517143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Locus coeruleus tyrosine hydroxylase positive neurons mediated the peripheral and central therapeutic effects of transcutaneous auricular vagus nerve stimulation (taVNS) in MRL/lpr mice.
    Lv H; Yu X; Wang P; Luo M; Luo Y; Lu H; Wang K; Xi A; Wen C; Xu Z
    Brain Stimul; 2024; 17(1):49-64. PubMed ID: 38145753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.