These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 37330166)
1. Multimodal Data Integration Advances Longitudinal Prediction of the Naturalistic Course of Depression and Reveals a Multimodal Signature of Remission During 2-Year Follow-up. Habets PC; Thomas RM; Milaneschi Y; Jansen R; Pool R; Peyrot WJ; Penninx BWJH; Meijer OC; van Wingen GA; Vinkers CH Biol Psychiatry; 2023 Dec; 94(12):948-958. PubMed ID: 37330166 [TBL] [Abstract][Full Text] [Related]
2. Predicting the naturalistic course of depression from a wide range of clinical, psychological, and biological data: a machine learning approach. Dinga R; Marquand AF; Veltman DJ; Beekman ATF; Schoevers RA; van Hemert AM; Penninx BWJH; Schmaal L Transl Psychiatry; 2018 Nov; 8(1):241. PubMed ID: 30397196 [TBL] [Abstract][Full Text] [Related]
3. Associations between age and the course of major depressive disorder: a 2-year longitudinal cohort study. Schaakxs R; Comijs HC; Lamers F; Kok RM; Beekman ATF; Penninx BWJH Lancet Psychiatry; 2018 Jul; 5(7):581-590. PubMed ID: 29887519 [TBL] [Abstract][Full Text] [Related]
4. Improving the diagnostic accuracy for major depressive disorder using machine learning algorithms integrating clinical and near-infrared spectroscopy data. Ho CS; Chan YL; Tan TW; Tay GW; Tang TB J Psychiatr Res; 2022 Mar; 147():194-202. PubMed ID: 35063738 [TBL] [Abstract][Full Text] [Related]
5. Long-term disability in major depressive disorder: a 6-year follow-up study. Iancu SC; Wong YM; Rhebergen D; van Balkom AJLM; Batelaan NM Psychol Med; 2020 Jul; 50(10):1644-1652. PubMed ID: 31284881 [TBL] [Abstract][Full Text] [Related]
6. Predicting the Naturalistic Course of Major Depressive Disorder Using Clinical and Multimodal Neuroimaging Information: A Multivariate Pattern Recognition Study. Schmaal L; Marquand AF; Rhebergen D; van Tol MJ; Ruhé HG; van der Wee NJ; Veltman DJ; Penninx BW Biol Psychiatry; 2015 Aug; 78(4):278-86. PubMed ID: 25702259 [TBL] [Abstract][Full Text] [Related]
7. Prediction of depression treatment outcome from multimodal data: a CAN-BIND-1 report. Sajjadian M; Uher R; Ho K; Hassel S; Milev R; Frey BN; Farzan F; Blier P; Foster JA; Parikh SV; Müller DJ; Rotzinger S; Soares CN; Turecki G; Taylor VH; Lam RW; Strother SC; Kennedy SH Psychol Med; 2023 Sep; 53(12):5374-5384. PubMed ID: 36004538 [TBL] [Abstract][Full Text] [Related]
8. Association of Symptom Network Structure With the Course of [corrected] Depression. van Borkulo C; Boschloo L; Borsboom D; Penninx BW; Waldorp LJ; Schoevers RA JAMA Psychiatry; 2015 Dec; 72(12):1219-26. PubMed ID: 26561400 [TBL] [Abstract][Full Text] [Related]
9. Testing a machine-learning algorithm to predict the persistence and severity of major depressive disorder from baseline self-reports. Kessler RC; van Loo HM; Wardenaar KJ; Bossarte RM; Brenner LA; Cai T; Ebert DD; Hwang I; Li J; de Jonge P; Nierenberg AA; Petukhova MV; Rosellini AJ; Sampson NA; Schoevers RA; Wilcox MA; Zaslavsky AM Mol Psychiatry; 2016 Oct; 21(10):1366-71. PubMed ID: 26728563 [TBL] [Abstract][Full Text] [Related]
10. Treatment Response Prediction in Major Depressive Disorder Using Multimodal MRI and Clinical Data: Secondary Analysis of a Randomized Clinical Trial. Poirot MG; Ruhe HG; Mutsaerts HMM; Maximov II; Groote IR; Bjørnerud A; Marquering HA; Reneman L; Caan MWA Am J Psychiatry; 2024 Mar; 181(3):223-233. PubMed ID: 38321916 [TBL] [Abstract][Full Text] [Related]
11. A New Prediction Model for Evaluating Treatment-Resistant Depression. Kautzky A; Baldinger-Melich P; Kranz GS; Vanicek T; Souery D; Montgomery S; Mendlewicz J; Zohar J; Serretti A; Lanzenberger R; Kasper S J Clin Psychiatry; 2017 Feb; 78(2):215-222. PubMed ID: 28068461 [TBL] [Abstract][Full Text] [Related]
12. Diagnosis of major depressive disorder by combining multimodal information from heart rate dynamics and serum proteomics using machine-learning algorithm. Kim EY; Lee MY; Kim SH; Ha K; Kim KP; Ahn YM Prog Neuropsychopharmacol Biol Psychiatry; 2017 Jun; 76():65-71. PubMed ID: 28223106 [TBL] [Abstract][Full Text] [Related]
13. Machine Learning Prediction of Quality of Life Improvement During Antidepressant Treatment of Patients With Major Depressive Disorder: A STAR*D and CAN-BIND-1 Report. Phaterpekar T; Nunez JJ; Morton E; Liu YS; Cao B; Frey BN; Milev RV; Müller DJ; Rotzinger S; Soares CN; Taylor VH; Uher R; Kennedy SH; Lam RW J Clin Psychiatry; 2023 Nov; 85(1):. PubMed ID: 37967350 [No Abstract] [Full Text] [Related]
14. The impact of early remission on disease trajectory and patient outcomes in major depression disorder (MDD): A targeted literature review and microsimulation modeling approach based on the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) study. Arnaud A; Benner J; Suthoff E; Werneburg B; Reinhart M; Sussman M; Kessler RC J Affect Disord; 2023 Mar; 325():264-272. PubMed ID: 36608852 [TBL] [Abstract][Full Text] [Related]
15. Machine Learning Analysis of Blood microRNA Data in Major Depression: A Case-Control Study for Biomarker Discovery. Qi B; Fiori LM; Turecki G; Trakadis YJ Int J Neuropsychopharmacol; 2020 Nov; 23(8):505-510. PubMed ID: 32365192 [TBL] [Abstract][Full Text] [Related]
16. Tracking and Monitoring Mood Stability of Patients With Major Depressive Disorder by Machine Learning Models Using Passive Digital Data: Prospective Naturalistic Multicenter Study. Bai R; Xiao L; Guo Y; Zhu X; Li N; Wang Y; Chen Q; Feng L; Wang Y; Yu X; Xie H; Wang G JMIR Mhealth Uhealth; 2021 Mar; 9(3):e24365. PubMed ID: 33683207 [TBL] [Abstract][Full Text] [Related]
17. Validity of remission and recovery criteria for schizophrenia and major depression: comparison of the results of two one-year follow-up naturalistic studies. Spellmann I; Schennach R; Seemüller F; Meyer S; Musil R; Jäger M; Schmauß M; Laux G; Pfeiffer H; Naber D; Schmidt LG; Gaebel W; Klosterkötter J; Heuser I; Bauer M; Adli M; Zeiler J; Bender W; Kronmüller KT; Ising M; Brieger P; Maier W; Lemke MR; Rüther E; Klingberg S; Gastpar M; Riedel M; Möller HJ Eur Arch Psychiatry Clin Neurosci; 2017 Jun; 267(4):303-313. PubMed ID: 27785605 [TBL] [Abstract][Full Text] [Related]
18. Towards Outcome-Driven Patient Subgroups: A Machine Learning Analysis Across Six Depression Treatment Studies. Benrimoh D; Kleinerman A; Furukawa TA; Iii CFR; Lenze EJ; Karp J; Mulsant B; Armstrong C; Mehltretter J; Fratila R; Perlman K; Israel S; Popescu C; Golden G; Qassim S; Anacleto A; Tanguay-Sela M; Kapelner A; Rosenfeld A; Turecki G Am J Geriatr Psychiatry; 2024 Mar; 32(3):280-292. PubMed ID: 37839909 [TBL] [Abstract][Full Text] [Related]
19. Integrating proteomic, sociodemographic and clinical data to predict future depression diagnosis in subthreshold symptomatic individuals. Han SYS; Cooper JD; Ozcan S; Rustogi N; Penninx BWJH; Bahn S Transl Psychiatry; 2019 Nov; 9(1):277. PubMed ID: 31699963 [TBL] [Abstract][Full Text] [Related]
20. Multimodal predictions of treatment outcome in major depression: A comparison of data-driven predictors with importance ratings by clinicians. Rost N; Dwyer DB; Gaffron S; Rechberger S; Maier D; Binder EB; Brückl TM J Affect Disord; 2023 Apr; 327():330-339. PubMed ID: 36750160 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]