These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 37330499)

  • 41. Recognition of soybean pods and yield prediction based on improved deep learning model.
    He H; Ma X; Guan H; Wang F; Shen P
    Front Plant Sci; 2022; 13():1096619. PubMed ID: 36714695
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Non-Destructive Monitoring of Crop Fresh Weight and Leaf Area with a Simple Formula and a Convolutional Neural Network.
    Moon T; Kim D; Kwon S; Ahn TI; Son JE
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298080
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ramie Yield Estimation Based on UAV RGB Images.
    Fu H; Wang C; Cui G; She W; Zhao L
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33477949
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Hyperspectral imaging combined with machine learning as a tool to obtain high-throughput plant salt-stress phenotyping.
    Feng X; Zhan Y; Wang Q; Yang X; Yu C; Wang H; Tang Z; Jiang D; Peng C; He Y
    Plant J; 2020 Mar; 101(6):1448-1461. PubMed ID: 31680357
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Early recognition of tomato gray leaf spot disease based on MobileNetv2-YOLOv3 model.
    Liu J; Wang X
    Plant Methods; 2020; 16():83. PubMed ID: 32523613
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Leaf area index estimation model for UAV image hyperspectral data based on wavelength variable selection and machine learning methods.
    Zhang J; Cheng T; Guo W; Xu X; Qiao H; Xie Y; Ma X
    Plant Methods; 2021 May; 17(1):49. PubMed ID: 33941211
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Soybean Seedling Root Segmentation Using Improved U-Net Network.
    Xu X; Qiu J; Zhang W; Zhou Z; Kang Y
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433500
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Variation of leaf area index estimation in forests based on remote sensing images of different spatial scales.].
    Liu T; Chen C; Fan WY; Mao XG; Yu Y
    Ying Yong Sheng Tai Xue Bao; 2019 May; 30(5):1687-1698. PubMed ID: 31107026
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Estimation of potato above-ground biomass based on unmanned aerial vehicle red-green-blue images with different texture features and crop height.
    Liu Y; Feng H; Yue J; Jin X; Li Z; Yang G
    Front Plant Sci; 2022; 13():938216. PubMed ID: 36092445
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Incorporation of machine learning and deep neural network approaches into a remote sensing-integrated crop model for the simulation of rice growth.
    Jeong S; Ko J; Shin T; Yeom JM
    Sci Rep; 2022 May; 12(1):9030. PubMed ID: 35637314
    [TBL] [Abstract][Full Text] [Related]  

  • 51. High-throughput characterization, correlation, and mapping of leaf photosynthetic and functional traits in the soybean (Glycine max) nested association mapping population.
    Montes CM; Fox C; Sanz-Sáez Á; Serbin SP; Kumagai E; Krause MD; Xavier A; Specht JE; Beavis WD; Bernacchi CJ; Diers BW; Ainsworth EA
    Genetics; 2022 May; 221(2):. PubMed ID: 35451475
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Combining spectral and wavelet texture features for unmanned aerial vehicles remote estimation of rice leaf area index.
    Zhou C; Gong Y; Fang S; Yang K; Peng Y; Wu X; Zhu R
    Front Plant Sci; 2022; 13():957870. PubMed ID: 35991436
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Feasibility of the soft attention-based models for automatic segmentation of OCT kidney images.
    Moradi M; Du X; Huan T; Chen Y
    Biomed Opt Express; 2022 May; 13(5):2728-2738. PubMed ID: 35774323
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Non-destructive evaluation of chlorophyll content in quinoa and amaranth leaves by simple and multiple regression analysis of RGB image components.
    Riccardi M; Mele G; Pulvento C; Lavini A; d'Andria R; Jacobsen SE
    Photosynth Res; 2014 Jun; 120(3):263-72. PubMed ID: 24442792
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Estimation of a New Canopy Structure Parameter for Rice Using Smartphone Photography.
    Yu Z; Ustin SL; Zhang Z; Liu H; Zhang X; Meng X; Cui Y; Guan H
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32707649
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Impact of elevated temperatures on specific leaf weight, stomatal density, photosynthesis and chlorophyll fluorescence in soybean.
    Jumrani K; Bhatia VS; Pandey GP
    Photosynth Res; 2017 Mar; 131(3):333-350. PubMed ID: 28025729
    [TBL] [Abstract][Full Text] [Related]  

  • 57. SoyNet: A high-resolution Indian soybean image dataset for leaf disease classification.
    Rajput AS; Shukla S; Thakur SS
    Data Brief; 2023 Aug; 49():109447. PubMed ID: 37577737
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Evaluation of important phenotypic parameters of tea plantations using multi-source remote sensing data.
    Li H; Wang Y; Fan K; Mao Y; Shen Y; Ding Z
    Front Plant Sci; 2022; 13():898962. PubMed ID: 35937382
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A novel approach for nitrogen diagnosis of wheat canopies digital images by mobile phones based on histogram.
    Qi X; Zhao Y; Huang Y; Wang Y; Qin W; Fu W; Guo Y; Ye Y
    Sci Rep; 2021 Jun; 11(1):13012. PubMed ID: 34155294
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Growth monitoring of greenhouse lettuce based on a convolutional neural network.
    Zhang L; Xu Z; Xu D; Ma J; Chen Y; Fu Z
    Hortic Res; 2020; 7():124. PubMed ID: 32821407
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.