These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 37330593)
1. A corrosion-resistant RuMoNi catalyst for efficient and long-lasting seawater oxidation and anion exchange membrane electrolyzer. Kang X; Yang F; Zhang Z; Liu H; Ge S; Hu S; Li S; Luo Y; Yu Q; Liu Z; Wang Q; Ren W; Sun C; Cheng HM; Liu B Nat Commun; 2023 Jun; 14(1):3607. PubMed ID: 37330593 [TBL] [Abstract][Full Text] [Related]
2. A sodium-ion-conducted asymmetric electrolyzer to lower the operation voltage for direct seawater electrolysis. Shi H; Wang T; Liu J; Chen W; Li S; Liang J; Liu S; Liu X; Cai Z; Wang C; Su D; Huang Y; Elbaz L; Li Q Nat Commun; 2023 Jul; 14(1):3934. PubMed ID: 37402710 [TBL] [Abstract][Full Text] [Related]
3. Nb Doping Induced the Formation of Protective Layer to Improve the Stability of Fe-Ni Xing M; Wang S; Yun J; Cao D Small; 2024 Nov; 20(46):e2402852. PubMed ID: 39118552 [TBL] [Abstract][Full Text] [Related]
4. Self-supporting, hierarchically hollow structured NiFe-PBA electrocatalyst for efficient alkaline seawater oxidation. Zhang K; Xu M; Wang J; Chen Z Nanoscale; 2023 Nov; 15(43):17525-17533. PubMed ID: 37869872 [TBL] [Abstract][Full Text] [Related]
5. Floating Seawater Splitting Device Based on NiFeCrMo Metal Hydroxide Electrocatalyst and Perovskite/Silicon Tandem Solar Cells. Pan S; Li R; Wang J; Zhang Q; Wang M; Shi B; Wang P; Zhao Y; Zhang X ACS Nano; 2023 Mar; 17(5):4539-4550. PubMed ID: 36808966 [TBL] [Abstract][Full Text] [Related]
6. In Situ Phase Separation-Induced Self-Healing Catalyst for Efficient Direct Seawater Electrolysis. Zhang Y; Jeong S; Son E; Choi Y; Lee S; Baik JM; Park H ACS Nano; 2024 Jun; 18(25):16312-16323. PubMed ID: 38864411 [TBL] [Abstract][Full Text] [Related]
7. Common-Ion Effect Triggered Highly Sustained Seawater Electrolysis with Additional NaCl Production. Li P; Wang S; Samo IA; Zhang X; Wang Z; Wang C; Li Y; Du Y; Zhong Y; Cheng C; Xu W; Liu X; Kuang Y; Lu Z; Sun X Research (Wash D C); 2020; 2020():2872141. PubMed ID: 33043295 [TBL] [Abstract][Full Text] [Related]
8. Stable Seawater Electrolysis Over 10 000 H via Chemical Fixation of Sulfate on NiFeBa-LDH. Chen H; Liu P; Li W; Xu W; Wen Y; Zhang S; Yi L; Dai Y; Chen X; Dai S; Tian Z; Chen L; Lu Z Adv Mater; 2024 Nov; 36(45):e2411302. PubMed ID: 39291899 [TBL] [Abstract][Full Text] [Related]
10. Energy-Saving Hydrogen Production by Seawater Electrolysis Coupling Sulfion Degradation. Zhang L; Wang Z; Qiu J Adv Mater; 2022 Apr; 34(16):e2109321. PubMed ID: 35150022 [TBL] [Abstract][Full Text] [Related]
11. Ag Nanoparticle-Induced Surface Chloride Immobilization Strategy Enables Stable Seawater Electrolysis. Xu W; Wang Z; Liu P; Tang X; Zhang S; Chen H; Yang Q; Chen X; Tian Z; Dai S; Chen L; Lu Z Adv Mater; 2024 Jan; 36(2):e2306062. PubMed ID: 37907201 [TBL] [Abstract][Full Text] [Related]
12. Enthralling Anodic Protection by Molybdate on High-Entropy Alloy-Based Electrocatalyst for Sustainable Seawater Oxidation. Khatun S; Shimizu K; Pal S; Nandi S; Watanabe S; Roy P Small; 2024 Oct; 20(43):e2402720. PubMed ID: 38924374 [TBL] [Abstract][Full Text] [Related]
13. Multiscale Engineering of Nonprecious Metal Electrocatalyst for Realizing Ultrastable Seawater Splitting in Weakly Alkaline Solution. Li J; Yu T; Wang K; Li Z; He J; Wang Y; Lei L; Zhuang L; Zhu M; Lian C; Shao Z; Xu Z Adv Sci (Weinh); 2022 Sep; 9(25):e2202387. PubMed ID: 35798320 [TBL] [Abstract][Full Text] [Related]
14. Electronic and Structural Modification of Mn Ul Haq T; Mansour S; Haik Y ACS Appl Mater Interfaces; 2022 May; 14(18):20443-20454. PubMed ID: 35138809 [TBL] [Abstract][Full Text] [Related]
15. S-modified NiFe-phosphate hierarchical hollow microspheres for efficient industrial-level seawater electrolysis. Song S; Wang Y; Tian X; Sun F; Liu X; Yuan Y; Li W; Zang J J Colloid Interface Sci; 2023 Mar; 633():668-678. PubMed ID: 36473357 [TBL] [Abstract][Full Text] [Related]
16. Upcycling of Spent LiFePO Li Z; Li M; Chen Y; Ye X; Liu M; Lee LYS Angew Chem Int Ed Engl; 2024 Oct; 63(44):e202410396. PubMed ID: 39115462 [TBL] [Abstract][Full Text] [Related]
17. Enhancing Resistance to Chloride Corrosion by Controlling the Morphologies of PtNi Electrocatalysts for Alkaline Seawater Hydrogen Evolution. Zhang XQ; Xiao YX; Tian G; Yang X; Dong Y; Zhang F; Yang XY Chemistry; 2023 Jan; 29(5):e202202811. PubMed ID: 36321591 [TBL] [Abstract][Full Text] [Related]
18. NiFe Layered Double Hydroxide/FeOOH Heterostructure Nanosheets as an Efficient and Durable Bifunctional Electrocatalyst for Overall Seawater Splitting. Jiang K; Liu W; Lai W; Wang M; Li Q; Wang Z; Yuan J; Deng Y; Bao J; Ji H Inorg Chem; 2021 Nov; 60(22):17371-17378. PubMed ID: 34705457 [TBL] [Abstract][Full Text] [Related]
19. Orderly Nanodendritic Nickel Substitute for Raney Nickel Catalyst Improving Alkali Water Electrolyzer. Zhu Z; Lin Y; Fang P; Wang M; Zhu M; Zhang X; Liu J; Hu J; Xu X Adv Mater; 2024 Jan; 36(1):e2307035. PubMed ID: 37739409 [TBL] [Abstract][Full Text] [Related]
20. Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis. Yu L; Zhu Q; Song S; McElhenny B; Wang D; Wu C; Qin Z; Bao J; Yu Y; Chen S; Ren Z Nat Commun; 2019 Nov; 10(1):5106. PubMed ID: 31704926 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]