These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 37331059)
1. Recovery of platinum group metal resources from high-level radioactive liquid wastes by non-contact photoreduction. Weng H; Wang Y; Li F; Muroya Y; Yamashita S; Cheng S J Hazard Mater; 2023 Sep; 458():131852. PubMed ID: 37331059 [TBL] [Abstract][Full Text] [Related]
2. Precise stepwise recovery of platinum group metals from high-level liquid wastes based on SDB polymer-modified SiO Wu K; Ning S; Yin X; Xu S; Zhong Y; Li Z; Chen L; Hamza MF; Fujita T; Wei Y Dalton Trans; 2024 Jan; 53(4):1586-1598. PubMed ID: 38165017 [TBL] [Abstract][Full Text] [Related]
3. Extraction behavior of a novel functionalized ionic liquid for separation of platinum group metals from aqueous nitric acid solution. Ito T; Oosugi H; Osawa N; Takahashi T; Kim SY; Nagaishi R Anal Sci; 2022 Jan; 38(1):91-97. PubMed ID: 35287209 [TBL] [Abstract][Full Text] [Related]
4. Chromatographic separation of platinum group metals from simulated high level liquid waste using macroporous silica-based adsorbents. Xu Y; Kim SY; Ito T; Tokuda H; Hitomi K; Ishii K J Chromatogr A; 2013 Oct; 1312():37-41. PubMed ID: 24011506 [TBL] [Abstract][Full Text] [Related]
5. Selective Pd Separation from Simulated Radioactive Liquid Waste by Precipitation Using Xenon Lamp Irradiation for a Simplified Procedure. Yomogida T; Saeki M; Morii S; Ohba H; Kitatsuji Y Anal Sci; 2021 Dec; 37(12):1843-1846. PubMed ID: 34305052 [TBL] [Abstract][Full Text] [Related]
6. Preferential Precipitation and Selective Separation of Rh(III) from Pd(II) and Pt(IV) Using 4-Alkylanilines as Precipitants. Matsumoto K; Yamakawa S; Sezaki Y; Katagiri H; Jikei M ACS Omega; 2019 Jan; 4(1):1868-1873. PubMed ID: 31459442 [TBL] [Abstract][Full Text] [Related]
7. High-value utilisation of PGM-containing residual oil: Recovery of inorganic acids, potassium, and PGMs using a zero-waste approach. Liu M; Zhao Y; Cheng Q; Tian B; Tian M; Zhang J; Zhang H; Xue T; Qi T J Environ Manage; 2023 Jun; 336():117599. PubMed ID: 36898239 [TBL] [Abstract][Full Text] [Related]
8. Precipitation of Pt, Pd, Rh, and Ru Nanoparticles with Non-Precious Metals from Model and Real Multicomponent Solutions. Rzelewska-Piekut M; Wolańczyk Z; Nowicki M; Regel-Rosocka M Molecules; 2023 Jul; 28(13):. PubMed ID: 37446850 [TBL] [Abstract][Full Text] [Related]
9. The Removal of Platinum Group Metals, Cs, Se, and Te from Nuclear Waste Glass Using Liquid Sb Extraction and Phase Separation Methods. Zhang M; Lv Y; Xu Z; Wang S; Wang J Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33238639 [TBL] [Abstract][Full Text] [Related]
10. Selective and Preferential Separation of Rhodium (III) from Palladium (II) and Platinum (IV) Using a m-Phenylene Diamine-Containing Precipitant. Matsumoto K; Yamakawa S; Haga K; Ishibashi K; Jikei M; Shibayama A Sci Rep; 2019 Aug; 9(1):12414. PubMed ID: 31455849 [TBL] [Abstract][Full Text] [Related]
11. Complexes of azathioprine, a biologically active mercaptopurine derivative, with Pt(II), Pd(II), Rh(III), Ru(III) and Ag(I). Chifotides HT; Katsaros N; Pneumatikakis G J Inorg Biochem; 1994 Dec; 56(4):249-63. PubMed ID: 7844587 [TBL] [Abstract][Full Text] [Related]
12. Precise recognition and efficient recovery of Pd(II) from high-level liquid waste by a novel aminothiazole-functionalized silica-based adsorbent. Dong H; Ning S; Li Z; Xu S; Hu F; Gao F; Wang Y; Chen L; Yin X; Fujita T; Hamza MF; Wei Y Chemosphere; 2024 Feb; 350():141184. PubMed ID: 38215834 [TBL] [Abstract][Full Text] [Related]
13. Studies on the Formation of Catalytically Active PGM Nanoparticles from Model Solutions as a Basis for the Recycling of Spent Catalysts. Rzelewska-Piekut M; Wiecka Z; Regel-Rosocka M Molecules; 2022 Jan; 27(2):. PubMed ID: 35056704 [TBL] [Abstract][Full Text] [Related]
14. The uptake characteristics of Prussian-blue nanoparticles for rare metal ions for recycling of precious metals from nuclear and electronic wastes. Watanabe S; Inaba Y; Harigai M; Takeshita K; Onoe J Sci Rep; 2022 Mar; 12(1):5135. PubMed ID: 35332191 [TBL] [Abstract][Full Text] [Related]
15. In situ time-resolved XAFS studies of metal particle formation by photoreduction in polymer solutions. Harada M; Inada Y Langmuir; 2009 Jun; 25(11):6049-61. PubMed ID: 19408898 [TBL] [Abstract][Full Text] [Related]
16. Stripping voltammetric determination of palladium, platinum and rhodium in freshwater and sediment samples from South African water resources. van der Horst C; Silwana B; Iwuoha E; Somerset V J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(13):2084-93. PubMed ID: 22871006 [TBL] [Abstract][Full Text] [Related]
17. A histopathological study of Hudson River crayfish, Orconectes virilis, exposed to platinum group metals. Wren M; Gagnon ZE J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(2):135-45. PubMed ID: 24171412 [TBL] [Abstract][Full Text] [Related]
18. A review on management of waste three-way catalysts and strategies for recovery of platinum group metals from them. Sun S; Jin C; He W; Li G; Zhu H; Huang J J Environ Manage; 2022 Mar; 305():114383. PubMed ID: 34968938 [TBL] [Abstract][Full Text] [Related]
19. Electrochemical Properties of a Rhodium(III) Mono-Terpyridyl Complex and Use as a Catalyst for Light-Driven Hydrogen Evolution in Water. Camara F; Gavaggio T; Dautreppe B; Chauvin J; Pécaut J; Aldakov D; Collomb MN; Fortage J Molecules; 2022 Oct; 27(19):. PubMed ID: 36235152 [TBL] [Abstract][Full Text] [Related]
20. Unique Anion-exchange Properties of 3,3'-Diaminobenzidine Resulting in High Selectivity for Rhodium(III) over Palladium(II) and Platinum(IV) in a Concentrated Hydrochloric Acid Solution. Suzuki T; Ogata T; Tanaka M; Kobayashi T; Shiwaku H; Yaita T; Narita H Anal Sci; 2019 Dec; 35(12):1353-1360. PubMed ID: 31447471 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]