These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 37331101)
1. Near infrared in and out: Deep imaging for scrap leather induced autophagy in vivo by an ultrasensitive two-photon polarity probe. Wang B; Ren L; Liang T; Hu W; Qiang T Biosens Bioelectron; 2023 Oct; 237():115453. PubMed ID: 37331101 [TBL] [Abstract][Full Text] [Related]
2. An ultrasensitive polarity-specific two-photon probe for revealing autophagy in live cells during scrap leather-induced neuroinflammation process. Liang T; Qiang T; Ren L; Wang B; Hu W Analyst; 2021 Jul; 146(14):4659-4665. PubMed ID: 34190222 [TBL] [Abstract][Full Text] [Related]
3. Near-Infrared in and out: Observation of Autophagy during Stroke via a Lysosome-Targeting Two-Photon Viscosity-Dependent Probe. Chai L; Liang T; An Q; Hu W; Wang Y; Wang B; Su S; Li C Anal Chem; 2022 Apr; 94(15):5797-5804. PubMed ID: 35380428 [TBL] [Abstract][Full Text] [Related]
4. A near-infrared fluorescent probe based on photostable Si-rhodamine for imaging hypochlorous acid during lysosome-involved inflammatory response. Mao GJ; Liang ZZ; Bi J; Zhang H; Meng HM; Su L; Gong YJ; Feng S; Zhang G Anal Chim Acta; 2019 Feb; 1048():143-153. PubMed ID: 30598144 [TBL] [Abstract][Full Text] [Related]
5. A lysosome-targeted near-infrared fluorescent probe for imaging endogenous cysteine (Cys) in living cells. Cai S; Liu C; Jiao X; Zhao L; Zeng X J Mater Chem B; 2020 Mar; 8(11):2269-2274. PubMed ID: 32100785 [TBL] [Abstract][Full Text] [Related]
6. Visualization of polarity changes in endoplasmic reticulum (ER) autophagy and rheumatoid arthritis mice with near-infrared ER-targeted fluorescent probe. Li M; Lei P; Shuang S; Dong C; Zhang L Talanta; 2024 Aug; 275():126141. PubMed ID: 38677168 [TBL] [Abstract][Full Text] [Related]
7. Tracking autophagy process with a through bond energy transfer-based ratiometric two-photon viscosity probe. Zhai S; Hu W; Wang W; Chai L; An Q; Li C; Liu Z Biosens Bioelectron; 2022 Oct; 213():114484. PubMed ID: 35724553 [TBL] [Abstract][Full Text] [Related]
8. Aggregation-Induced Emission Luminogen with Near-Infrared-II Excitation and Near-Infrared-I Emission for Ultradeep Intravital Two-Photon Microscopy. Qi J; Sun C; Li D; Zhang H; Yu W; Zebibula A; Lam JWY; Xi W; Zhu L; Cai F; Wei P; Zhu C; Kwok RTK; Streich LL; Prevedel R; Qian J; Tang BZ ACS Nano; 2018 Aug; 12(8):7936-7945. PubMed ID: 30059201 [TBL] [Abstract][Full Text] [Related]
9. Two-Photon Fluorescent Probe for Monitoring Autophagy via Fluorescence Lifetime Imaging. Hou L; Ning P; Feng Y; Ding Y; Bai L; Li L; Yu H; Meng X Anal Chem; 2018 Jun; 90(12):7122-7126. PubMed ID: 29865790 [TBL] [Abstract][Full Text] [Related]
10. Tracking lysosomal polarity variation in inflamed, obese, and cancer mice guided by a fluorescence sensing strategy. Yin J; Peng M; Lin W Chem Commun (Camb); 2019 Sep; 55(74):11063-11066. PubMed ID: 31454009 [TBL] [Abstract][Full Text] [Related]
11. Visual monitoring of the lysosomal pH changes during autophagy with a red-emission fluorescent probe. Wang X; Fan L; Wang Y; Zhang C; Liang W; Shuang S; Dong C J Mater Chem B; 2020 Feb; 8(7):1466-1471. PubMed ID: 31994589 [TBL] [Abstract][Full Text] [Related]
12. Simultaneous monitoring of polarity changes of lipid droplets and lysosomes with two-photon fluorescent probes. Dai Y; Zhan Z; Li Q; Liu R; Lv Y Anal Chim Acta; 2020 Nov; 1136():34-41. PubMed ID: 33081947 [TBL] [Abstract][Full Text] [Related]
13. A fast responsive two-photon fluorescent probe for imaging H₂O₂ in lysosomes with a large turn-on fluorescence signal. Ren M; Deng B; Wang JY; Kong X; Liu ZR; Zhou K; He L; Lin W Biosens Bioelectron; 2016 May; 79():237-43. PubMed ID: 26710341 [TBL] [Abstract][Full Text] [Related]
14. Unravelling Immune-Inflammatory Responses and Lysosomal Adaptation: Insights from Two-Photon Excited Delayed Fluorescence Imaging. Wang X; Shi G; Xu S; Sun Y; Qiu H; Wang Q; Han X; Zhang Q; Zhang T; Hu HY Adv Healthc Mater; 2024 Jun; 13(15):e2304223. PubMed ID: 38407490 [TBL] [Abstract][Full Text] [Related]
15. Visualization of Lysosomal Dynamics during Autophagy by Fluorescent Probe. Li G; Zhang L; Zheng H; Huang L; Li Z; Li W; Lin W Anal Chem; 2023 Oct; 95(42):15795-15802. PubMed ID: 37815496 [TBL] [Abstract][Full Text] [Related]
16. A photostable Si-rhodamine-based near-infrared fluorescent probe for monitoring lysosomal pH during heat stroke. Mao GJ; Liang ZZ; Gao GQ; Wang YY; Guo XY; Su L; Zhang H; Ma QJ; Zhang G Anal Chim Acta; 2019 Dec; 1092():117-125. PubMed ID: 31708024 [TBL] [Abstract][Full Text] [Related]
17. A lysosomal-targeted and viscosity-ultrasensitive near-infrared fluorescent probe for sensing viscosity in cells and a diabetic mice model. Wang P; Ai S; Deng M; Liu Y; Liu Y; He L; Li S Talanta; 2024 Oct; 278():126506. PubMed ID: 38968659 [TBL] [Abstract][Full Text] [Related]
18. A dual-response fluorescent probe for simultaneously monitoring polarity and ATP during autophagy. Jiang WL; Wang ZQ; Tan ZK; Mao GJ; Fei J; Li CY J Mater Chem B; 2022 Jun; 10(22):4285-4292. PubMed ID: 35584392 [TBL] [Abstract][Full Text] [Related]
19. Tetraphenylethylene-based AIE nanoprobes for labeling lysosome by two-photon imaging in living cells. Zhang T; Huang Y; Chen X; Zheng F; Shen Y; Chen G; Ye Q; Chen K; Xiao X; Peng Y Spectrochim Acta A Mol Biomol Spectrosc; 2024 Feb; 306():123630. PubMed ID: 37948932 [TBL] [Abstract][Full Text] [Related]
20. Discovery of an Ultra-rapid and Sensitive Lysosomal Fluorescence Lipophagy Process. Zhang H; Shi L; Li K; Liu X; Won M; Liu YZ; Choe Y; Liu XY; Liu YH; Chen SY; Yu KK; Kim JS; Yu XQ Angew Chem Int Ed Engl; 2022 Mar; 61(11):e202116439. PubMed ID: 34964238 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]