These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 37331745)

  • 1. Exploring the influence of nasal vestibule structure on nasal obstruction using CFD and Machine Learning method.
    Jin X; Lu Y; Ren X; Guo S; Jin D; Liu B; Bai X; Liu J
    Med Eng Phys; 2023 Jul; 117():103988. PubMed ID: 37331745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensitivity of nasal airflow variables computed via computational fluid dynamics to the computed tomography segmentation threshold.
    Cherobin GB; Voegels RL; Gebrim EMMS; Garcia GJM
    PLoS One; 2018; 13(11):e0207178. PubMed ID: 30444909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regional peak mucosal cooling predicts the perception of nasal patency.
    Zhao K; Jiang J; Blacker K; Lyman B; Dalton P; Cowart BJ; Pribitkin EA
    Laryngoscope; 2014 Mar; 124(3):589-95. PubMed ID: 23775640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional relevance of computational fluid dynamics in the field of nasal obstruction: A literature review.
    Radulesco T; Meister L; Bouchet G; Giordano J; Dessi P; Perrier P; Michel J
    Clin Otolaryngol; 2019 Sep; 44(5):801-809. PubMed ID: 31233660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of a Concha Bullosa on Nasal Airflow Characteristics in the Setting of Nasal Septal Deviation: A Computational Fluid Dynamics Analysis.
    Li L; Zang H; Han D; Ramanathan M; Carrau RL; London NR
    Am J Rhinol Allergy; 2020 Jul; 34(4):456-462. PubMed ID: 32046502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of inferior turbinate hypertrophy on the aerodynamic pattern and physiological functions of the turbulent airflow - a CFD simulation model.
    Chen XB; Lee HP; Chong VF; Wang de Y
    Rhinology; 2010 Jun; 48(2):163-8. PubMed ID: 20502754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Overview of Computational Fluid Dynamics Preoperative Analysis of the Nasal Airway.
    Xavier R; Menger DJ; de Carvalho HC; Spratley J
    Facial Plast Surg; 2021 Jun; 37(3):306-316. PubMed ID: 33556971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [A computational fluid dynamics study of inner flow through nasal cavity with unilateral hypertrophic inferior turbinate].
    Guo Y; Zhang Y; Chen G; Liu S; Lu X; Zhu M; Cai C; Chen X
    Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2009 Sep; 23(17):773-7. PubMed ID: 20030039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Normative ranges of nasal airflow variables in healthy adults.
    Borojeni AAT; Garcia GJM; Moghaddam MG; Frank-Ito DO; Kimbell JS; Laud PW; Koenig LJ; Rhee JS
    Int J Comput Assist Radiol Surg; 2020 Jan; 15(1):87-98. PubMed ID: 31267334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Nasal Obstruction on Continuous Positive Airway Pressure Treatment: Computational Fluid Dynamics Analyses.
    Wakayama T; Suzuki M; Tanuma T
    PLoS One; 2016; 11(3):e0150951. PubMed ID: 26943335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Impact of Adhesions on Nasal Airflow: A Quantitative Analysis Using Computational Fluid Dynamics.
    Senanayake P; Warfield-McAlpine P; Salati H; Bradshaw K; Wong E; Inthavong K; Singh N
    Am J Rhinol Allergy; 2023 May; 37(3):273-283. PubMed ID: 36373577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Assessment of nasal function by computational fluid dynamics].
    Skansing DB; Mandø M; Holte MB; Larsen K
    Ugeskr Laeger; 2022 Jan; 184(5):. PubMed ID: 35179125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New CFD tools to evaluate nasal airflow.
    Burgos MA; Sanmiguel-Rojas E; Del Pino C; Sevilla-García MA; Esteban-Ortega F
    Eur Arch Otorhinolaryngol; 2017 Aug; 274(8):3121-3128. PubMed ID: 28547013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlation of regional formaldehyde flux predictions with the distribution of formaldehyde-induced squamous metaplasia in F344 rat nasal passages.
    Kimbell JS; Gross EA; Richardson RB; Conolly RB; Morgan KT
    Mutat Res; 1997 Oct; 380(1-2):143-54. PubMed ID: 9385395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Linking Chronic Otitis Media and Nasal Obstruction: A CFD Approach.
    Burgos MA; Pardo A; Rodríguez R; Rodríguez-Balbuena B; Castro D; Piqueras F; Esteban F
    Laryngoscope; 2022 Jun; 132(6):1224-1230. PubMed ID: 34585755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling congenital nasal pyriform aperture stenosis using computational fluid dynamics.
    Patel TR; Li C; Krebs J; Zhao K; Malhotra P
    Int J Pediatr Otorhinolaryngol; 2018 Jun; 109():180-184. PubMed ID: 29728177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlation of Nasal Mucosal Temperature and Nasal Patency-A Computational Fluid Dynamics Study.
    Tjahjono R; Salati H; Inthavong K; Singh N
    Laryngoscope; 2023 Jun; 133(6):1328-1335. PubMed ID: 37158263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental measurements and computational predictions of regional particle deposition in a sectional nasal model.
    Schroeter JD; Tewksbury EW; Wong BA; Kimbell JS
    J Aerosol Med Pulm Drug Deliv; 2015 Feb; 28(1):20-9. PubMed ID: 24580111
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlation between Subjective Nasal Patency and Intranasal Airflow Distribution.
    Casey KP; Borojeni AA; Koenig LJ; Rhee JS; Garcia GJ
    Otolaryngol Head Neck Surg; 2017 Apr; 156(4):741-750. PubMed ID: 28139171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A computational analysis of nasal vestibule morphologic variabilities on nasal function.
    Ramprasad VH; Frank-Ito DO
    J Biomech; 2016 Feb; 49(3):450-7. PubMed ID: 26830439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.