BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 37331807)

  • 1. N-terminal acetyltransferase NatB regulates Rad51-dependent repair of double-strand breaks in Saccharomyces cerevisiae.
    Sugaya N; Tanaka S; Keyamura K; Noda S; Akanuma G; Hishida T
    Genes Genet Syst; 2023 Sep; 98(2):61-72. PubMed ID: 37331807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rad52 sumoylation prevents the toxicity of unproductive Rad51 filaments independently of the anti-recombinase Srs2.
    Esta A; Ma E; Dupaigne P; Maloisel L; Guerois R; Le Cam E; Veaute X; Coïc E
    PLoS Genet; 2013; 9(10):e1003833. PubMed ID: 24130504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alkylation base damage is converted into repairable double-strand breaks and complex intermediates in G2 cells lacking AP endonuclease.
    Ma W; Westmoreland JW; Gordenin DA; Resnick MA
    PLoS Genet; 2011 Apr; 7(4):e1002059. PubMed ID: 21552545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overexpression of Rad51 inhibits double-strand break-induced homologous recombination but does not affect gene conversion tract lengths.
    Paffett KS; Clikeman JA; Palmer S; Nickoloff JA
    DNA Repair (Amst); 2005 Jun; 4(6):687-98. PubMed ID: 15878310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glu-108 in Saccharomyces cerevisiae Rad51 Is Critical for DNA Damage-Induced Nuclear Function.
    Suhane T; Bindumadhavan V; Fangaria N; Nair AS; Tabassum W; Muley P; Bhattacharyya MK; Bhattacharyya S
    mSphere; 2019 Mar; 4(2):. PubMed ID: 30894431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rad52 Oligomeric N-Terminal Domain Stabilizes Rad51 Nucleoprotein Filaments and Contributes to Their Protection against Srs2.
    Ma E; Maloisel L; Le Falher L; Guérois R; Coïc E
    Cells; 2021 Jun; 10(6):. PubMed ID: 34207997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rad51 replication fork recruitment is required for DNA damage tolerance.
    González-Prieto R; Muñoz-Cabello AM; Cabello-Lobato MJ; Prado F
    EMBO J; 2013 May; 32(9):1307-21. PubMed ID: 23563117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Live cell monitoring of double strand breaks in S. cerevisiae.
    Waterman DP; Zhou F; Li K; Lee CS; Tsabar M; Eapen VV; Mazzella A; Haber JE
    PLoS Genet; 2019 Mar; 15(3):e1008001. PubMed ID: 30822309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rad51-independent interchromosomal double-strand break repair by gene conversion requires Rad52 but not Rad55, Rad57, or Dmc1.
    Pohl TJ; Nickoloff JA
    Mol Cell Biol; 2008 Feb; 28(3):897-906. PubMed ID: 18039855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Histone H3K56 acetylation, Rad52, and non-DNA repair factors control double-strand break repair choice with the sister chromatid.
    Muñoz-Galván S; Jimeno S; Rothstein R; Aguilera A
    PLoS Genet; 2013; 9(1):e1003237. PubMed ID: 23357952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multifaceted role of the Saccharomyces cerevisiae Srs2 helicase in homologous recombination regulation.
    Macris MA; Sung P
    Biochem Soc Trans; 2005 Dec; 33(Pt 6):1447-50. PubMed ID: 16246143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of yeast Rad51 and Rad52 relieves Rad52-mediated inhibition of de novo telomere addition.
    Epum EA; Mohan MJ; Ruppe NP; Friedman KL
    PLoS Genet; 2020 Feb; 16(2):e1008608. PubMed ID: 32012161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of Rad51 recombinase presynaptic filament assembly via interactions with the Rad52 mediator and the Srs2 anti-recombinase.
    Seong C; Colavito S; Kwon Y; Sung P; Krejci L
    J Biol Chem; 2009 Sep; 284(36):24363-71. PubMed ID: 19605344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential regulation of homologous recombination at DNA breaks and replication forks by the Mrc1 branch of the S-phase checkpoint.
    Alabert C; Bianco JN; Pasero P
    EMBO J; 2009 Apr; 28(8):1131-41. PubMed ID: 19322196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SRS2 and SGS1 prevent chromosomal breaks and stabilize triplet repeats by restraining recombination.
    Kerrest A; Anand RP; Sundararajan R; Bermejo R; Liberi G; Dujon B; Freudenreich CH; Richard GF
    Nat Struct Mol Biol; 2009 Feb; 16(2):159-67. PubMed ID: 19136956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rad51 inhibits translocation formation by non-conservative homologous recombination in Saccharomyces cerevisiae.
    Manthey GM; Bailis AM
    PLoS One; 2010 Jul; 5(7):e11889. PubMed ID: 20686691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional Validation of Rare Human Genetic Variants Involved in Homologous Recombination Using Saccharomyces cerevisiae.
    Lee MS; Yu M; Kim KY; Park GH; Kwack K; Kim KP
    PLoS One; 2015; 10(5):e0124152. PubMed ID: 25938495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of the Rad52 amino-terminal DNA binding activity in DNA strand capture in homologous recombination.
    Shi I; Hallwyl SC; Seong C; Mortensen U; Rothstein R; Sung P
    J Biol Chem; 2009 Nov; 284(48):33275-84. PubMed ID: 19812039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Replication Protein A Phosphorylation Facilitates RAD52-Dependent Homologous Recombination in BRCA-Deficient Cells.
    Carley AC; Jalan M; Subramanyam S; Roy R; Borgstahl GEO; Powell SN
    Mol Cell Biol; 2022 Feb; 42(2):e0052421. PubMed ID: 34928169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A functional link between NAD
    Croft T; James Theoga Raj C; Salemi M; Phinney BS; Lin SJ
    J Biol Chem; 2018 Feb; 293(8):2927-2938. PubMed ID: 29317496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.