These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 37331976)
1. Delineation of suitable sites for groundwater recharge based on groundwater potential with RS, GIS, and AHP approach for Mand catchment of Mahanadi Basin. Baghel S; Tripathi MP; Khalkho D; Al-Ansari N; Kumar A; Elbeltagi A Sci Rep; 2023 Jun; 13(1):9860. PubMed ID: 37331976 [TBL] [Abstract][Full Text] [Related]
2. Integrated assessment of groundwater potential zones and artificial recharge sites using GIS and Fuzzy-AHP: a case study in Peddavagu watershed, India. Shekar PR; Mathew A Environ Monit Assess; 2023 Jun; 195(7):906. PubMed ID: 37382701 [TBL] [Abstract][Full Text] [Related]
3. Promoting artificial recharge to enhance groundwater potential in the lower Bhavani River basin of South India using geospatial techniques. Anand B; Karunanidhi D; Subramani T Environ Sci Pollut Res Int; 2021 Apr; 28(15):18437-18456. PubMed ID: 32424751 [TBL] [Abstract][Full Text] [Related]
4. Integration of hydrogeological data, GIS and AHP techniques applied to delineate groundwater potential zones in sandstone, limestone and shales rocks of the Damoh district, (MP) central India. Moharir KN; Pande CB; Gautam VK; Singh SK; Rane NL Environ Res; 2023 Jul; 228():115832. PubMed ID: 37054834 [TBL] [Abstract][Full Text] [Related]
5. Developing quantifiable approaches for delineating suitable options for irrigating fallow areas during dry season-a case study from Eastern India. Behera MD; Biradar C; Das P; Chowdary VM Environ Monit Assess; 2020 Jan; 191(Suppl 3):805. PubMed ID: 31989341 [TBL] [Abstract][Full Text] [Related]
6. Assessment of groundwater recharge potential in a typical geological transition zone in Bauchi, NE-Nigeria using remote sensing/GIS and MCDA approaches. Abdullateef L; Tijani MN; Nuru NA; John S; Mustapha A Heliyon; 2021 Apr; 7(4):e06762. PubMed ID: 33997372 [TBL] [Abstract][Full Text] [Related]
7. Mapping potential groundwater accumulation zones for Karachi city using GIS and AHP techniques. Ahmad I; Hasan H; Jilani MM; Ahmed SI Environ Monit Assess; 2023 Feb; 195(3):381. PubMed ID: 36757435 [TBL] [Abstract][Full Text] [Related]
8. Artificial groundwater recharge zones mapping using remote sensing and GIS: a case study in Indian Punjab. Singh A; Panda SN; Kumar KS; Sharma CS Environ Manage; 2013 Jul; 52(1):61-71. PubMed ID: 23775493 [TBL] [Abstract][Full Text] [Related]
9. Determination of potential recharge zones and its validation against groundwater quality parameters through the application of GIS and remote sensing techniques in uMhlathuze catchment, KwaZulu-Natal, South Africa. Ponnusamy D; Elumalai V Chemosphere; 2022 Nov; 307(Pt 4):136121. PubMed ID: 35995193 [TBL] [Abstract][Full Text] [Related]
10. Delineation of groundwater potential zones of the transboundary aquifers within the semiarid Bulal catchment, Southern Ethiopia. Gebeyehu A; Ayenew T; Asrat A Environ Monit Assess; 2023 Mar; 195(4):458. PubMed ID: 36897486 [TBL] [Abstract][Full Text] [Related]
11. Data on artificial recharge sites identified by geospatial tools in semi-arid region of Anantapur District, Andhra Pradesh, India. Rajasekhar M; Sudarsana Raju G; Siddi Raju R; Imran Basha U Data Brief; 2018 Aug; 19():462-474. PubMed ID: 29900343 [TBL] [Abstract][Full Text] [Related]
12. Geospatial application on mapping groundwater recharge zones in Makutupora basin, Tanzania. Kisiki CP; Bekele TW; Ayenew T; Mjemah IC Heliyon; 2022 Oct; 8(10):e10760. PubMed ID: 36211994 [TBL] [Abstract][Full Text] [Related]
13. Identification of suitable zones and sites for rainwater harvesting using GIS and multicriteria decision analysis. Waghaye AM; Singh DK; Sarangi A; Sena DR; Sahoo RN; Sarkar SK Environ Monit Assess; 2023 Jan; 195(2):279. PubMed ID: 36609939 [TBL] [Abstract][Full Text] [Related]
14. Groundwater potential mapping in Trans Yamuna Region, Prayagraj, using combination of geospatial technologies and AHP method. Swarnim ; Tripathi JN; Sonker I; Tiwari SP Environ Monit Assess; 2023 Oct; 195(11):1375. PubMed ID: 37882900 [TBL] [Abstract][Full Text] [Related]
15. Delineation of groundwater potential zones at micro-spatial units of Nagaon district in Assam, India, using GIS-based MCDA and AHP techniques. Bhuyan MJ; Deka N Environ Sci Pollut Res Int; 2024 Sep; 31(41):54107-54128. PubMed ID: 36504300 [TBL] [Abstract][Full Text] [Related]
16. Comparative assessment of groundwater vulnerability using GIS-based DRASTIC and DRASTIC-AHP for Thoothukudi District, Tamil Nadu India. Saravanan S; Pitchaikani S; Thambiraja M; Sathiyamurthi S; Sivakumar V; Velusamy S; Shanmugamoorthy M Environ Monit Assess; 2022 Nov; 195(1):57. PubMed ID: 36326917 [TBL] [Abstract][Full Text] [Related]
17. Mapping of groundwater potential zones in Salem Chalk Hills, Tamil Nadu, India, using remote sensing and GIS techniques. Thilagavathi N; Subramani T; Suresh M; Karunanidhi D Environ Monit Assess; 2015 Apr; 187(4):164. PubMed ID: 25740689 [TBL] [Abstract][Full Text] [Related]
18. Assessment of groundwater potential zones in Saroor Nagar watershed, Telangana, India, using geospatial techniques and analytical hierarchy process. Vaddiraju SC; Talari R Environ Sci Pollut Res Int; 2023 Jul; 30(33):79758-79773. PubMed ID: 36884172 [TBL] [Abstract][Full Text] [Related]
19. Groundwater spring potential zonation using AHP and fuzzy-AHP in Eastern Himalayan region: Papum Pare district, Arunachal Pradesh, India. Ranjan P; Pandey PK; Pandey V Environ Sci Pollut Res Int; 2024 Feb; 31(7):10317-10333. PubMed ID: 37012568 [TBL] [Abstract][Full Text] [Related]
20. Mapping coastal groundwater potential zones using remote sensing based AHP model in Al Qunfudhah region along Red Sea, Saudi Arabia. Alshehri F; Abd El-Hamid HT; Mohamed A Heliyon; 2024 Apr; 10(7):e28186. PubMed ID: 38560101 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]