These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 37332289)

  • 21. Cotton Yield Estimation Based on Vegetation Indices and Texture Features Derived From RGB Image.
    Ma Y; Ma L; Zhang Q; Huang C; Yi X; Chen X; Hou T; Lv X; Zhang Z
    Front Plant Sci; 2022; 13():925986. PubMed ID: 35783985
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Above-Ground Biomass Estimation in Oats Using UAV Remote Sensing and Machine Learning.
    Sharma P; Leigh L; Chang J; Maimaitijiang M; Caffé M
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062559
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improved YOLOv4 for Pedestrian Detection and Counting in UAV Images.
    Kong H; Chen Z; Yue W; Ni K
    Comput Intell Neurosci; 2022; 2022():6106853. PubMed ID: 35875752
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-Throughput Phenotyping of Bioethanol Potential in Cereals Using UAV-Based Multi-Spectral Imagery.
    Ostos-Garrido FJ; de Castro AI; Torres-Sánchez J; Pistón F; Peña JM
    Front Plant Sci; 2019; 10():948. PubMed ID: 31396251
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of ground cover estimates from experiment plots in cotton, sorghum and sugarcane based on images and ortho-mosaics captured by UAV.
    Duan T; Zheng B; Guo W; Ninomiya S; Guo Y; Chapman SC
    Funct Plant Biol; 2016 Feb; 44(1):169-183. PubMed ID: 32480555
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prediction of plant-level tomato biomass and yield using machine learning with unmanned aerial vehicle imagery.
    Tatsumi K; Igarashi N; Mengxue X
    Plant Methods; 2021 Jul; 17(1):77. PubMed ID: 34266447
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A New Vegetation Segmentation Approach for Cropped Fields Based on Threshold Detection from Hue Histograms.
    Hassanein M; Lari Z; El-Sheimy N
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29670055
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A novel approach for estimating the flowering rate of litchi based on deep learning and UAV images.
    Lin P; Li D; Jia Y; Chen Y; Huang G; Elkhouchlaa H; Yao Z; Zhou Z; Zhou H; Li J; Lu H
    Front Plant Sci; 2022; 13():966639. PubMed ID: 36092399
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A survey on deep learning-based identification of plant and crop diseases from UAV-based aerial images.
    Bouguettaya A; Zarzour H; Kechida A; Taberkit AM
    Cluster Comput; 2023; 26(2):1297-1317. PubMed ID: 35968221
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rapeseed Seedling Stand Counting and Seeding Performance Evaluation at Two Early Growth Stages Based on Unmanned Aerial Vehicle Imagery.
    Zhao B; Zhang J; Yang C; Zhou G; Ding Y; Shi Y; Zhang D; Xie J; Liao Q
    Front Plant Sci; 2018; 9():1362. PubMed ID: 30298081
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Estimating leaf area index using unmanned aerial vehicle data: shallow vs. deep machine learning algorithms.
    Liu S; Jin X; Nie C; Wang S; Yu X; Cheng M; Shao M; Wang Z; Tuohuti N; Bai Y; Liu Y
    Plant Physiol; 2021 Nov; 187(3):1551-1576. PubMed ID: 34618054
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The estimation of crop emergence in potatoes by UAV RGB imagery.
    Li B; Xu X; Han J; Zhang L; Bian C; Jin L; Liu J
    Plant Methods; 2019; 15():15. PubMed ID: 30792752
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A model for phenotyping crop fractional vegetation cover using imagery from unmanned aerial vehicles.
    Wan L; Zhu J; Du X; Zhang J; Han X; Zhou W; Li X; Liu J; Liang F; He Y; Cen H
    J Exp Bot; 2021 Jun; 72(13):4691-4707. PubMed ID: 33963382
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Automated extraction of
    Ji Y; Yan E; Yin X; Song Y; Wei W; Mo D
    Front Plant Sci; 2022; 13():958940. PubMed ID: 36035664
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Machine learning for high-throughput field phenotyping and image processing provides insight into the association of above and below-ground traits in cassava (
    Selvaraj MG; Valderrama M; Guzman D; Valencia M; Ruiz H; Acharjee A
    Plant Methods; 2020; 16():87. PubMed ID: 32549903
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Airborne Visual Detection and Tracking of Cooperative UAVs Exploiting Deep Learning.
    Opromolla R; Inchingolo G; Fasano G
    Sensors (Basel); 2019 Oct; 19(19):. PubMed ID: 31591368
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparing YOLOv3, YOLOv4 and YOLOv5 for Autonomous Landing Spot Detection in Faulty UAVs.
    Nepal U; Eslamiat H
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062425
    [TBL] [Abstract][Full Text] [Related]  

  • 38. How to construct low-altitude aerial image datasets for deep learning.
    Shu X; Cheng X; Xu S; Chen Y; Ma T; Zhang W
    Math Biosci Eng; 2021 Jan; 18(2):986-999. PubMed ID: 33757171
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Estimation of potato above-ground biomass based on unmanned aerial vehicle red-green-blue images with different texture features and crop height.
    Liu Y; Feng H; Yue J; Jin X; Li Z; Yang G
    Front Plant Sci; 2022; 13():938216. PubMed ID: 36092445
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Estimation of vegetation indices for high-throughput phenotyping of wheat using aerial imaging.
    Khan Z; Rahimi-Eichi V; Haefele S; Garnett T; Miklavcic SJ
    Plant Methods; 2018; 14():20. PubMed ID: 29563961
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.