These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 37332351)

  • 21. Improving biomedical Named Entity Recognition with additional external contexts.
    Tho BD; Nguyen MT; Le DT; Ying LL; Inoue S; Nguyen TT
    J Biomed Inform; 2024 Aug; 156():104674. PubMed ID: 38871012
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analyzing transfer learning impact in biomedical cross-lingual named entity recognition and normalization.
    Rivera-Zavala RM; Martínez P
    BMC Bioinformatics; 2021 Dec; 22(Suppl 1):601. PubMed ID: 34920703
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Extraction of Information Related to Adverse Drug Events from Electronic Health Record Notes: Design of an End-to-End Model Based on Deep Learning.
    Li F; Liu W; Yu H
    JMIR Med Inform; 2018 Nov; 6(4):e12159. PubMed ID: 30478023
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A fine-grained Chinese word segmentation and part-of-speech tagging corpus for clinical text.
    Xiong Y; Wang Z; Jiang D; Wang X; Chen Q; Xu H; Yan J; Tang B
    BMC Med Inform Decis Mak; 2019 Apr; 19(Suppl 2):66. PubMed ID: 30961602
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Automatic Extraction of Comprehensive Drug Safety Information from Adverse Drug Event Narratives in the Korea Adverse Event Reporting System Using Natural Language Processing Techniques.
    Kim S; Kang T; Chung TK; Choi Y; Hong Y; Jung K; Lee H
    Drug Saf; 2023 Aug; 46(8):781-795. PubMed ID: 37330415
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deep learning with language models improves named entity recognition for PharmaCoNER.
    Sun C; Yang Z; Wang L; Zhang Y; Lin H; Wang J
    BMC Bioinformatics; 2021 Dec; 22(Suppl 1):602. PubMed ID: 34920700
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nested Named Entity Recognition Based on Dual Stream Feature Complementation.
    Liao T; Huang R; Zhang S; Duan S; Chen Y; Ma W; Chen X
    Entropy (Basel); 2022 Oct; 24(10):. PubMed ID: 37420474
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A multi-layer soft lattice based model for Chinese clinical named entity recognition.
    Guo S; Yang W; Han L; Song X; Wang G
    BMC Med Inform Decis Mak; 2022 Jul; 22(1):201. PubMed ID: 35908055
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparing Different Methods for Named Entity Recognition in Portuguese Neurology Text.
    Lopes F; Teixeira C; Gonçalo Oliveira H
    J Med Syst; 2020 Feb; 44(4):77. PubMed ID: 32112285
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A two-stage deep learning approach for extracting entities and relationships from medical texts.
    Suárez-Paniagua V; Rivera Zavala RM; Segura-Bedmar I; Martínez P
    J Biomed Inform; 2019 Nov; 99():103285. PubMed ID: 31546016
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Document-level attention-based BiLSTM-CRF incorporating disease dictionary for disease named entity recognition.
    Xu K; Yang Z; Kang P; Wang Q; Liu W
    Comput Biol Med; 2019 May; 108():122-132. PubMed ID: 31003175
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A pre-training and self-training approach for biomedical named entity recognition.
    Gao S; Kotevska O; Sorokine A; Christian JB
    PLoS One; 2021; 16(2):e0246310. PubMed ID: 33561139
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Research on Chinese medical named entity recognition based on collaborative cooperation of multiple neural network models.
    Ji B; Li S; Yu J; Ma J; Tang J; Wu Q; Tan Y; Liu H; Ji Y
    J Biomed Inform; 2020 Apr; 104():103395. PubMed ID: 32109551
    [TBL] [Abstract][Full Text] [Related]  

  • 34. AgCNER, the First Large-Scale Chinese Named Entity Recognition Dataset for Agricultural Diseases and Pests.
    Yao X; Hao X; Liu R; Li L; Guo X
    Sci Data; 2024 Jul; 11(1):769. PubMed ID: 38997427
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lexicon and attention-based named entity recognition for kiwifruit diseases and pests: A Deep learning approach.
    Zhang L; Nie X; Zhang M; Gu M; Geissen V; Ritsema CJ; Niu D; Zhang H
    Front Plant Sci; 2022; 13():1053449. PubMed ID: 36466267
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Use of BERT (Bidirectional Encoder Representations from Transformers)-Based Deep Learning Method for Extracting Evidences in Chinese Radiology Reports: Development of a Computer-Aided Liver Cancer Diagnosis Framework.
    Liu H; Zhang Z; Xu Y; Wang N; Huang Y; Yang Z; Jiang R; Chen H
    J Med Internet Res; 2021 Jan; 23(1):e19689. PubMed ID: 33433395
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Application of Entity-BERT model based on neuroscience and brain-like cognition in electronic medical record entity recognition.
    Lu W; Jiang J; Shi Y; Zhong X; Gu J; Huangfu L; Gong M
    Front Neurosci; 2023; 17():1259652. PubMed ID: 37799340
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Entity recognition of Chinese medical text based on multi-head self-attention combined with BILSTM-CRF.
    Li C; Ma K
    Math Biosci Eng; 2022 Jan; 19(3):2206-2218. PubMed ID: 35240782
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fast and effective biomedical named entity recognition using temporal convolutional network with conditional random field.
    Sun GX; Zhou CJ; Zhao HY; Jin B; Gao Z
    Math Biosci Eng; 2020 May; 17(4):3553-3566. PubMed ID: 32987543
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An improved data augmentation approach and its application in medical named entity recognition.
    Chen H; Dan L; Lu Y; Chen M; Zhang J
    BMC Med Inform Decis Mak; 2024 Aug; 24(1):221. PubMed ID: 39103849
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.