These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 37332905)

  • 1. Anionic bio-flocculants from sugarcane for purification of sucrose: An application of circular bioeconomy.
    Leão S; Magalhães S; Alves L; Gamelas JAF; Lima C; Stein B; Rasteiro MDG
    Heliyon; 2023 Jun; 9(6):e17134. PubMed ID: 37332905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of Anionic and Cationic Pulp-Based Flocculants With Diverse Lignin Contents for Application in Effluent Treatment From the Textile Industry: Flocculation Monitoring.
    Grenda K; Gamelas JAF; Arnold J; Cayre OJ; Rasteiro MG
    Front Chem; 2020; 8():5. PubMed ID: 32083051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of Anionic Eco-Friendly Flocculants Prepared from Eucalyptus Pulps with Diverse Lignin Contents for Application in Effluent Treatment.
    Grenda K; Gamelas JAF; Arnold J; Pellizzer L; Cayre OJ; Rasteiro MG
    Polymers (Basel); 2020 Dec; 13(1):. PubMed ID: 33374710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioethanol production with different dosages of the commercial Acrylamide polymer compared to a Bioextract in clarifying sugarcane juice.
    Freita CM; Freita LA; Tralli LF; Silva AF; Mendes FQ; Teixeira V; Mutton MJR
    An Acad Bras Cienc; 2017; 89(4):3093-3102. PubMed ID: 29236850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alkali-based AFEX pretreatment for the conversion of sugarcane bagasse and cane leaf residues to ethanol.
    Krishnan C; Sousa Lda C; Jin M; Chang L; Dale BE; Balan V
    Biotechnol Bioeng; 2010 Oct; 107(3):441-50. PubMed ID: 20521302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cationization of
    Grenda K; Gamelas JAF; Arnold J; Cayre OJ; Rasteiro MG
    RSC Adv; 2019 Oct; 9(60):34814-34826. PubMed ID: 35530674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical modification of tannins from Acacia mearnsii to produce formaldehyde free flocculant.
    Machado G; Dos Santos CAB; Gomes J; Faria D; Santos F; Lourega R
    Sci Total Environ; 2020 Nov; 745():140875. PubMed ID: 32758742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental evaluation of eco-friendly flocculants prepared from date palm rachis.
    Khiari R; Dridi-Dhaouadi S; Aguir C; Mhenni MF
    J Environ Sci (China); 2010; 22(10):1539-43. PubMed ID: 21235183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Briquetting of sugarcane bagasse as a proper waste management technology in Vietnam.
    Brunerová A; Roubík H; Brožek M; Van Dung D; Phung LD; Hasanudin U; Iryani DA; Herák D
    Waste Manag Res; 2020 Nov; 38(11):1239-1250. PubMed ID: 32686610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sulfonation of dialdehyde cellulose extracted from sugarcane bagasse for synergistically enhanced water solubility.
    Thiangtham S; Runt J; Manuspiya H
    Carbohydr Polym; 2019 Mar; 208():314-322. PubMed ID: 30658805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of sugarcane bagasse-based activated carbon for formaldehyde gas removal from potted plants exposure chamber.
    Mohamed EF; El-Hashemy MA; Abdel-Latif NM; Shetaya WH
    J Air Waste Manag Assoc; 2015 Dec; 65(12):1413-20. PubMed ID: 26606041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequential Injection System for Analysis of Degree Brix, Orthophosphate and pH in Raw Sugarcane Juice Applicable to Sugar Industry.
    Saetear P; Saechua N; Sereenonchai K
    Molecules; 2021 Oct; 26(21):. PubMed ID: 34770888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyacrylamide and poly(N,N-dimethylacrylamide) grafted cellulose nanocrystals as efficient flocculants for kaolin suspension.
    Liu T; Ding E; Xue F
    Int J Biol Macromol; 2017 Oct; 103():1107-1112. PubMed ID: 28528941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of cultivar selection and process optimization on ethanol yield from different varieties of sugarcane.
    Benjamin Y; García-Aparicio MP; Görgens JF
    Biotechnol Biofuels; 2014; 7():60. PubMed ID: 24725458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Poly-γ-glutamic acid produced from Bacillus licheniformis CGMCC 2876 as a potential substitute for polyacrylamide in the sugarcane industry.
    Yan S; Yao H; Chen Z; Zeng S; Xi X; Wang Y; He N; Li Q
    Biotechnol Prog; 2015; 31(5):1287-94. PubMed ID: 26033934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fungal deterioration of the bagasse storage from the harvested sugarcane.
    Peng N; Yao Z; Wang Z; Huang J; Khan MT; Chen B; Zhang M
    Biotechnol Biofuels; 2021 Jul; 14(1):152. PubMed ID: 34215313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving enzymatic digestibility of sugarcane bagasse from different varieties of sugarcane using deep eutectic solvent pretreatment.
    Chourasia VR; Pandey A; Pant KK; Henry RJ
    Bioresour Technol; 2021 Oct; 337():125480. PubMed ID: 34320760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sugarcane productivity and sugar yield improvement: Selecting variety, nitrogen fertilizer rate, and bioregulator as a first-line treatment.
    Desalegn B; Kebede E; Legesse H; Fite T
    Heliyon; 2023 Apr; 9(4):e15520. PubMed ID: 37151717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of Brazilian sugarcane bagasse ash in concrete as sand replacement.
    Sales A; Lima SA
    Waste Manag; 2010 Jun; 30(6):1114-22. PubMed ID: 20163947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative hydrolysis and fermentation of sugarcane and agave bagasse.
    Hernández-Salas JM; Villa-Ramírez MS; Veloz-Rendón JS; Rivera-Hernández KN; González-César RA; Plascencia-Espinosa MA; Trejo-Estrada SR
    Bioresour Technol; 2009 Feb; 100(3):1238-45. PubMed ID: 19000863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.