BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 37333366)

  • 61. Image denoising by transfer learning of generative adversarial network for dental CT.
    Hegazy MAA; Cho MH; Lee SY
    Biomed Phys Eng Express; 2020 Sep; 6(5):055024. PubMed ID: 33444255
    [TBL] [Abstract][Full Text] [Related]  

  • 62. DENOISING SWEPT SOURCE OPTICAL COHERENCE TOMOGRAPHY VOLUMETRIC SCANS USING A DEEP LEARNING MODEL.
    Ledesma-Gil G; Mao Z; Liu J; Spaide RF
    Retina; 2022 Mar; 42(3):450-455. PubMed ID: 35175017
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Domain-adaptive denoising network for low-dose CT via noise estimation and transfer learning.
    Wang J; Tang Y; Wu Z; Tsui BMW; Chen W; Yang X; Zheng J; Li M
    Med Phys; 2023 Jan; 50(1):74-88. PubMed ID: 36018732
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Framework for denoising Monte Carlo photon transport simulations using deep learning.
    Ardakani MR; Yu L; Kaeli D; Fang Q
    J Biomed Opt; 2022 May; 27(8):. PubMed ID: 35614533
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Quantitative evaluation of deep convolutional neural network-based image denoising for low-dose computed tomography.
    Usui K; Ogawa K; Goto M; Sakano Y; Kyougoku S; Daida H
    Vis Comput Ind Biomed Art; 2021 Jul; 4(1):21. PubMed ID: 34304321
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Enhanced Visualization of Retinal Microvasculature in Optical Coherence Tomography Angiography Imaging via Deep Learning.
    Kadomoto S; Uji A; Muraoka Y; Akagi T; Tsujikawa A
    J Clin Med; 2020 May; 9(5):. PubMed ID: 32370282
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Wavelet subband-specific learning for low-dose computed tomography denoising.
    Kim W; Lee J; Kang M; Kim JS; Choi JH
    PLoS One; 2022; 17(9):e0274308. PubMed ID: 36084002
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Real-time noise reduction based on ground truth free deep learning for optical coherence tomography.
    Huang Y; Zhang N; Hao Q
    Biomed Opt Express; 2021 Apr; 12(4):2027-2040. PubMed ID: 33996214
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Disentangling Noise from Images: A Flow-Based Image Denoising Neural Network.
    Liu Y; Anwar S; Qin Z; Ji P; Caldwell S; Gedeon T
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560213
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Performance of deep learning restoration methods for the extraction of particle dynamics in noisy microscopy image sequences.
    Kefer P; Iqbal F; Locatelli M; Lawrimore J; Zhang M; Bloom K; Bonin K; Vidi PA; Liu J
    Mol Biol Cell; 2021 Apr; 32(9):903-914. PubMed ID: 33502895
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Low-Dose CT Image Denoising Using a Generative Adversarial Network With Wasserstein Distance and Perceptual Loss.
    Yang Q; Yan P; Zhang Y; Yu H; Shi Y; Mou X; Kalra MK; Zhang Y; Sun L; Wang G
    IEEE Trans Med Imaging; 2018 Jun; 37(6):1348-1357. PubMed ID: 29870364
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Feasibility of high-resolution magnetic resonance imaging of the liver using deep learning reconstruction based on the deep learning denoising technique.
    Tanabe M; Higashi M; Yonezawa T; Yamaguchi T; Iida E; Furukawa M; Okada M; Shinoda K; Ito K
    Magn Reson Imaging; 2021 Jul; 80():121-126. PubMed ID: 33971240
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Image quality evaluation in deep-learning-based CT noise reduction using virtual imaging trial methods: Contrast-dependent spatial resolution.
    Zhou Z; Gong H; Hsieh S; McCollough CH; Yu L
    Med Phys; 2024 Mar; ():. PubMed ID: 38555876
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Improving phase-based conductivity reconstruction by means of deep learning-based denoising of
    Jung KJ; Mandija S; Kim JH; Ryu K; Jung S; Cui C; Kim SY; Park M; van den Berg CAT; Kim DH
    Magn Reson Med; 2021 Oct; 86(4):2084-2094. PubMed ID: 33949721
    [TBL] [Abstract][Full Text] [Related]  

  • 75. De-noising of SPECT images via optimal thresholding by wavelets.
    Noubari HA; Fayazi A; Babapour F
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():352-5. PubMed ID: 19963711
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Denoising of MR images with Rician noise using a wider neural network and noise range division.
    You X; Cao N; Lu H; Mao M; Wanga W
    Magn Reson Imaging; 2019 Dec; 64():154-159. PubMed ID: 31220567
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Denoising Magnetic Resonance Spectroscopy (MRS) Data Using Stacked Autoencoder for Improving Signal-to-Noise Ratio and Speed of MRS.
    Wang J; Ji B; Lei Y; Liu T; Mao H; Yang X
    ArXiv; 2023 Mar; ():. PubMed ID: 37033456
    [TBL] [Abstract][Full Text] [Related]  

  • 78. RepE: unsupervised representation learning for image enhancement in nonlinear optical microscopy.
    Jhang YJ; Lin X; Chia SH; Chen WC; Wu IC; Wu MT; Zhuo GY; Tai TM; Chen HW
    Opt Lett; 2023 Aug; 48(16):4245-4248. PubMed ID: 37582003
    [TBL] [Abstract][Full Text] [Related]  

  • 79. An unsupervised two-step training framework for low-dose computed tomography denoising.
    Kim W; Lee J; Choi JH
    Med Phys; 2024 Feb; 51(2):1127-1144. PubMed ID: 37432026
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Improved cortical surface reconstruction using sub-millimeter resolution MPRAGE by image denoising.
    Tian Q; Zaretskaya N; Fan Q; Ngamsombat C; Bilgic B; Polimeni JR; Huang SY
    Neuroimage; 2021 Jun; 233():117946. PubMed ID: 33711484
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.