These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 37334208)
1. Spectral analysis of multiple scattering factors of turbid media for glucose measurement using near-infrared spectroscopy. Yue L; Tongshuai H; Wenbo L; Qing G; Jin L J Biomed Opt; 2023 Jun; 28(6):065005. PubMed ID: 37334208 [TBL] [Abstract][Full Text] [Related]
2. Evaluation and Validation on Sensitivity of Near-Infrared Diffuse Reflectance in Non-Invasive Human Blood Glucose Measurement. Ge Q; Han T; Liu R; Zhang Z; Sun D; Liu J; Xu K Sensors (Basel); 2024 Sep; 24(18):. PubMed ID: 39338624 [TBL] [Abstract][Full Text] [Related]
3. Near-Infrared Diffuse Reflectance Measurement Method Based on Temperature-Insensitive Radial Distance. Wu M; Liu R; Xu K Appl Spectrosc; 2018 Jul; 72(7):1021-1028. PubMed ID: 29712437 [TBL] [Abstract][Full Text] [Related]
4. Correlation Analysis Combined with a Floating Reference Measurement to Improve the Prediction Accuracy of Glucose in Scattering Media. Min X; Liu R; Fu B; Xu K Appl Spectrosc; 2017 Sep; 71(9):2076-2082. PubMed ID: 28537434 [TBL] [Abstract][Full Text] [Related]
5. Simulation study of in vitro glucose measurement by NIR spectroscopy and a method of error reduction. Tarumi M; Shimada M; Murakami T; Tamura M; Shimada M; Arimoto H; Yamada Y Phys Med Biol; 2003 Aug; 48(15):2373-90. PubMed ID: 12953904 [TBL] [Abstract][Full Text] [Related]
6. Pharmaceutical applications of separation of absorption and scattering in near-infrared spectroscopy (NIRS). Shi Z; Anderson CA J Pharm Sci; 2010 Dec; 99(12):4766-83. PubMed ID: 20821396 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of Cerebral Hemodynamics and Tissue Morphology of In Vivo Rat Brain Using Spectral Diffuse Reflectance Imaging. Nishidate I; Ishizuka T; Mustari A; Yoshida K; Kawauchi S; Sato S; Sato M Appl Spectrosc; 2017 May; 71(5):866-878. PubMed ID: 27381353 [TBL] [Abstract][Full Text] [Related]
8. Temperature measurements of turbid aqueous solutions using near-infrared spectroscopy. Kakuta N; Arimoto H; Momoki H; Li F; Yamada Y Appl Opt; 2008 May; 47(13):2227-33. PubMed ID: 18449286 [TBL] [Abstract][Full Text] [Related]
9. Application of Monte Carlo simulation-based photon migration for enhanced understanding of near-infrared (NIR) diffuse reflectance. Part I: Depth of penetration in pharmaceutical materials. Shi Z; Anderson CA J Pharm Sci; 2010 May; 99(5):2399-412. PubMed ID: 19967783 [TBL] [Abstract][Full Text] [Related]
10. Particle size determination in aluminum hydroxide suspensions using near-infrared transmittance spectroscopy. Lai X; Zheng Y; Ipsen H; Jacobsen S; Larsen JN; Løwenstein H; Søndergaard I Appl Spectrosc; 2007 Nov; 61(11):1184-90. PubMed ID: 18028697 [TBL] [Abstract][Full Text] [Related]
11. New methodology to obtain a calibration model for noninvasive near-infrared blood glucose monitoring. Maruo K; Oota T; Tsurugi M; Nakagawa T; Arimoto H; Tamura M; Ozaki Y; Yamada Y Appl Spectrosc; 2006 Apr; 60(4):441-9. PubMed ID: 16613642 [TBL] [Abstract][Full Text] [Related]
12. Preliminary Clinical Validation of a Differential Correction Method for Improving Measurement Accuracy in Noninvasive Measurement of Blood Glucose Using Near-Infrared Spectroscopy. Han G; Yu X; Xia D; Liu R; Liu J; Xu K Appl Spectrosc; 2017 Sep; 71(9):2177-2186. PubMed ID: 28429598 [TBL] [Abstract][Full Text] [Related]
13. Quantifying tissue optical properties of human heads in vivo using continuous-wave near-infrared spectroscopy and subject-specific three-dimensional Monte Carlo models. Kao TC; Sung KB J Biomed Opt; 2022 Jun; 27(8):. PubMed ID: 35733242 [TBL] [Abstract][Full Text] [Related]
14. Diffuse photon density wave measurements and Monte Carlo simulations. Kuzmin VL; Neidrauer MT; Diaz D; Zubkov LA J Biomed Opt; 2015 Oct; 20(10):105006. PubMed ID: 26465614 [TBL] [Abstract][Full Text] [Related]
15. Composition analysis of scattering liquids based on spatially offset visible-near-infrared spectroscopy. Xiong C; Li G; Lin L Appl Spectrosc; 2012 Nov; 66(11):1347-52. PubMed ID: 23146191 [TBL] [Abstract][Full Text] [Related]
16. [Application of Two-Dimensional Near-Infrared Correlation Spectroscopy in the Specificity Analysis of Noninvasive Blood Glucose Sensing]. Hu YX; Liu R; Zhang W; Xu KX Guang Pu Xue Yu Guang Pu Fen Xi; 2017 Feb; 37(2):491-6. PubMed ID: 30280541 [TBL] [Abstract][Full Text] [Related]
17. [Detection of pear firmness using near infrared diffuse reflectance spectroscopy]. Fu XP; Ying YB; Liu YD; Lu HS Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Jun; 26(6):1038-41. PubMed ID: 16961225 [TBL] [Abstract][Full Text] [Related]
18. Near-infrared noninvasive blood glucose prediction without using multivariate analyses: introduction of imaginary spectra due to scattering change in the skin. Maruo K; Yamada Y J Biomed Opt; 2015 Apr; 20(4):047003. PubMed ID: 25859836 [TBL] [Abstract][Full Text] [Related]
19. Estimation of complex refractive index of polydisperse particulate systems from multiple-scattered ultraviolet-visible-near-infrared measurements. Velazco-Roa MA; Thennadil SN Appl Opt; 2007 Jun; 46(18):3730-5. PubMed ID: 17538669 [TBL] [Abstract][Full Text] [Related]
20. Non-invasive monitoring of metabolites using near infrared spectroscopy: state of the art. Heise HM Horm Metab Res; 1996 Oct; 28(10):527-34. PubMed ID: 8934210 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]