BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

369 related articles for article (PubMed ID: 37334350)

  • 1. The application and research progress of anti-angiogenesis therapy in tumor immunotherapy.
    Tu J; Liang H; Li C; Huang Y; Wang Z; Chen X; Yuan X
    Front Immunol; 2023; 14():1198972. PubMed ID: 37334350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tumor Vessel Normalization: A Window to Enhancing Cancer Immunotherapy.
    Li S; Zhang Q; Hong Y
    Technol Cancer Res Treat; 2020; 19():1533033820980116. PubMed ID: 33287656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Manipulation of the crosstalk between tumor angiogenesis and immunosuppression in the tumor microenvironment: Insight into the combination therapy of anti-angiogenesis and immune checkpoint blockade.
    Zheng W; Qian C; Tang Y; Yang C; Zhou Y; Shen P; Chen W; Yu S; Wei Z; Wang A; Lu Y; Zhao Y
    Front Immunol; 2022; 13():1035323. PubMed ID: 36439137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anti-angiogenesis: Opening a new window for immunotherapy.
    Guo F; Cui J
    Life Sci; 2020 Oct; 258():118163. PubMed ID: 32738363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting tumor vascularization: promising strategies for vascular normalization.
    Zheng R; Li F; Li F; Gong A
    J Cancer Res Clin Oncol; 2021 Sep; 147(9):2489-2505. PubMed ID: 34148156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Normalization of the tumor microenvironment by harnessing vascular and immune modulation to achieve enhanced cancer therapy.
    Choi Y; Jung K
    Exp Mol Med; 2023 Nov; 55(11):2308-2319. PubMed ID: 37907742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anti-angiogenesis revisited: reshaping the treatment landscape of advanced non-small cell lung cancer.
    Choi SH; Yoo SS; Lee SY; Park JY
    Arch Pharm Res; 2022 Apr; 45(4):263-279. PubMed ID: 35449345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Angiogenesis in gynecological cancers and the options for anti-angiogenesis therapy.
    Yetkin-Arik B; Kastelein AW; Klaassen I; Jansen CHJR; Latul YP; Vittori M; Biri A; Kahraman K; Griffioen AW; Amant F; Lok CAR; Schlingemann RO; van Noorden CJF
    Biochim Biophys Acta Rev Cancer; 2021 Jan; 1875(1):188446. PubMed ID: 33058997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances of nanomaterial-based anti-angiogenic therapy in tumor vascular normalization and immunotherapy.
    Xiao M; Shi Y; Jiang S; Cao M; Chen W; Xu Y; Xu Z; Wang K
    Front Oncol; 2022; 12():1039378. PubMed ID: 36523993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inducing vascular normalization: A promising strategy for immunotherapy.
    Luo X; Zou W; Wei Z; Yu S; Zhao Y; Wu Y; Wang A; Lu Y
    Int Immunopharmacol; 2022 Nov; 112():109167. PubMed ID: 36037653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting vascular normalization: a promising strategy to improve immune-vascular crosstalk in cancer immunotherapy.
    Qian C; Liu C; Liu W; Zhou R; Zhao L
    Front Immunol; 2023; 14():1291530. PubMed ID: 38193080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reprogramming the immunosuppressive tumor microenvironment: exploiting angiogenesis and thrombosis to enhance immunotherapy.
    Shafqat A; Omer MH; Ahmed EN; Mushtaq A; Ijaz E; Ahmed Z; Alkattan K; Yaqinuddin A
    Front Immunol; 2023; 14():1200941. PubMed ID: 37520562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Research Progress of Antiangiogenic Therapy, Immune Therapy and Tumor Microenvironment.
    Hu H; Chen Y; Tan S; Wu S; Huang Y; Fu S; Luo F; He J
    Front Immunol; 2022; 13():802846. PubMed ID: 35281003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergies of Targeting Angiogenesis and Immune Checkpoints in Cancer: From Mechanism to Clinical Applications.
    Zhou S; Zhang H
    Anticancer Agents Med Chem; 2020; 20(7):768-776. PubMed ID: 32031076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational simulations of tumor growth and treatment response: Benefits of high-frequency, low-dose drug regimens and concurrent vascular normalization.
    Nikmaneshi MR; Jain RK; Munn LL
    PLoS Comput Biol; 2023 Jun; 19(6):e1011131. PubMed ID: 37289729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Next-Generation Anti-Angiogenic Therapies as a Future Prospect for Glioma Immunotherapy; From Bench to Bedside.
    Shamshiripour P; Hajiahmadi F; Lotfi S; Esmaeili NR; Zare A; Akbarpour M; Ahmadvand D
    Front Immunol; 2022; 13():859633. PubMed ID: 35757736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incorporation of immunotherapies and nanomedicine to better normalize angiogenesis-based cancer treatment.
    Jasim SA; Farber IM; Noraldeen SAM; Bansal P; Alsaab HO; Abdullaev B; Alkhafaji AT; Alawadi AH; Hamzah HF; Mohammed BA
    Microvasc Res; 2024 Jul; 154():104691. PubMed ID: 38703993
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Vascular normalization and cancer immunotherapy].
    Zeng J; Yuan D; Liu H; Song Y
    Zhongguo Fei Ai Za Zhi; 2014 Mar; 17(3):273-6. PubMed ID: 24667268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anti-angiogenic nano-delivery system promotes tumor vascular normalizing and micro-environment reprogramming in solid tumor.
    Shen R; Peng L; Zhou W; Wang D; Jiang Q; Ji J; Hu F; Yuan H
    J Control Release; 2022 Sep; 349():550-564. PubMed ID: 35841997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Normalization of tumor vasculature: A potential strategy to increase the efficiency of immune checkpoint blockades in cancers.
    Shi Y; Li Y; Wu B; Zhong C; Lang Q; Liang Z; Zhang Y; Lv C; Han S; Yu Y; Xu F; Tian Y
    Int Immunopharmacol; 2022 Sep; 110():108968. PubMed ID: 35764018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.