These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 37334474)

  • 1. Direct count of fluorescent microspheres in a microfluidic chip based on the capillary electrophoresis method.
    Yang J; Li Z; Zhang D; Yamaguchi Y; Xiao W
    Anal Methods; 2023 Jun; 15(25):3014-3018. PubMed ID: 37334474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Separation of subcellular fluorescent microspheres by capillary electrophoresis.
    Li Z; Wang X; Chen J; Tao C; Zhang D; Yamaguchi Y
    Anal Bioanal Chem; 2020 Mar; 412(8):1871-1877. PubMed ID: 31989197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dielectrophoretic microbead sorting using modular electrode design and capillary-driven microfluidics.
    Tirapu-Azpiroz J; Temiz Y; Delamarche E
    Biomed Microdevices; 2017 Oct; 19(4):95. PubMed ID: 29082438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent developments in microfluidic chip-based separation devices coupled to MS for bioanalysis.
    Lin SL; Lin TY; Fuh MR
    Bioanalysis; 2013 Oct; 5(20):2567-80. PubMed ID: 24138628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic picoliter-scale translational spontaneous sample introduction for high-speed capillary electrophoresis.
    Zhang T; Fang Q; Du WB; Fu JL
    Anal Chem; 2009 May; 81(9):3693-8. PubMed ID: 19351143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Developments of microfluidic chip-based capillary electrophoresis for protein separation].
    Dong Y; Fang Q
    Se Pu; 2008 May; 26(3):269-73. PubMed ID: 18724658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous flow separation of particles within an asymmetric microfluidic device.
    Zhang X; Cooper JM; Monaghan PB; Haswell SJ
    Lab Chip; 2006 Apr; 6(4):561-6. PubMed ID: 16572220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Open microfluidic gel electrophoresis: Rapid and low cost separation and analysis of DNA at the nanoliter scale.
    Gutzweiler L; Gleichmann T; Tanguy L; Koltay P; Zengerle R; Riegger L
    Electrophoresis; 2017 Jul; 38(13-14):1764-1770. PubMed ID: 28426159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic-based metal enhanced fluorescence for capillary electrophoresis by Ag nanorod arrays.
    Xiao C; Cao Z; Deng J; Huang Z; Xu Z; Fu J; Yobas L
    Nanotechnology; 2014 Jun; 25(22):225502. PubMed ID: 24833562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic Acoustophoresis for Flowthrough Separation of Gram-Negative Bacteria using Aptamer Affinity Beads.
    Choi HJ; Kim BW; Lee S; Jeong OC
    J Vis Exp; 2022 Oct; (188):. PubMed ID: 36314795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic chip electrophoresis for biochemical analysis.
    Ou X; Chen P; Huang X; Li S; Liu BF
    J Sep Sci; 2020 Jan; 43(1):258-270. PubMed ID: 31654552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [In situ photopolymerization of polyacrylamide-based preconcentrator on a microfluidic chip for capillary electrophoresis].
    Yamamoto S
    Yakugaku Zasshi; 2012; 132(9):1031-5. PubMed ID: 23023420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An automated electrokinetic continuous sample introduction system for microfluidic chip-based capillary electrophoresis.
    He QH; Fang Q; Du WB; Huang YZ; Fang ZL
    Analyst; 2005 Jul; 130(7):1052-8. PubMed ID: 15965529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvement of size-based particle separation throughput in slanted spiral microchannel by modifying outlet geometry.
    Mihandoust A; Maleki-Jirsaraei N; Rouhani S; Safi S; Alizadeh M
    Electrophoresis; 2020 Mar; 41(5-6):353-359. PubMed ID: 32012295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics.
    Yamada M; Seki M
    Lab Chip; 2005 Nov; 5(11):1233-9. PubMed ID: 16234946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Studies on single-cell analysis].
    Cheng J; Huang W; Wang Z
    Se Pu; 2007 Jan; 25(1):1-10. PubMed ID: 17432566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Droplet-interfaced microchip and capillary electrophoretic separations.
    Niu X; Pereira F; Edel JB; de Mello AJ
    Anal Chem; 2013 Sep; 85(18):8654-60. PubMed ID: 23957576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase-changing sacrificial materials for interfacing microfluidics with ion-permeable membranes to create on-chip preconcentrators and electric field gradient focusing microchips.
    Kelly RT; Li Y; Woolley AT
    Anal Chem; 2006 Apr; 78(8):2565-70. PubMed ID: 16615765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inertia-Acoustophoresis Hybrid Microfluidic Device for Rapid and Efficient Cell Separation.
    Kim U; Oh B; Ahn J; Lee S; Cho Y
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On-chip quantitative PCR using integrated real-time detection by capillary electrophoresis.
    Liu Y; Li C; Li Z; Chan SD; Eto D; Wu W; Zhang JP; Chien RL; Wada HG; Greenstein M; Satomura S
    Electrophoresis; 2016 Feb; 37(3):545-52. PubMed ID: 26456095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.