These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 37334570)

  • 1. Edge Modification and Site-Selective Functionalization of Graphene Quantum Dots: A Versatile Technique for Designing Tunable Optoelectronic and Sensing Devices.
    Basak T; Basak T
    J Phys Chem A; 2023 Jun; 127(25):5335-5343. PubMed ID: 37334570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of Graphene Quantum Dot Edge Morphologies on Their Optical Properties.
    Khan SN; Weight BM; Gifford BJ; Tretiak S; Bishop A
    J Phys Chem Lett; 2022 Jun; 13(25):5801-5807. PubMed ID: 35726899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical investigation of electronic and optical properties of nitrogen doped triangular shaped graphene quantum dots.
    Basak T; Basak T
    J Phys Condens Matter; 2020 Aug; 32(44):. PubMed ID: 32585650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic and optical properties of Janus black arsenic-phosphorus AsP quantum dots under magnetic field.
    Yan X; Ke Q; Cai Y
    Nanotechnology; 2022 Apr; 33(26):. PubMed ID: 35316792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning the properties of graphene quantum dots by passivation.
    Rani P; Dalal R; Srivastava S; Tankeshwar K
    Phys Chem Chem Phys; 2022 Nov; 24(42):26232-26240. PubMed ID: 36278955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sulfication-induced non-radiative electron-hole recombination dynamics in graphene quantum dots for tuning photocatalytic performance.
    Cui P; Xue Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Feb; 287(Pt 1):122117. PubMed ID: 36403541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solvent dependent synthesis of edge-controlled graphene quantum dots with high photoluminescence quantum yield and their application in confocal imaging of cancer cells.
    Rajender G; Goswami U; Giri PK
    J Colloid Interface Sci; 2019 Apr; 541():387-398. PubMed ID: 30710821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical study on the optical and electronic properties of graphene quantum dots doped with heteroatoms.
    Feng J; Dong H; Pang B; Shao F; Zhang C; Yu L; Dong L
    Phys Chem Chem Phys; 2018 Jun; 20(22):15244-15252. PubMed ID: 29789854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering silicon-carbide quantum dots for third generation photovoltaic cells.
    Ouarrad H; Ramadan FZ; Drissi LB
    Opt Express; 2020 Nov; 28(24):36656-36667. PubMed ID: 33379755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons.
    Ritter KA; Lyding JW
    Nat Mater; 2009 Mar; 8(3):235-42. PubMed ID: 19219032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitrogen-Functionalized Graphene Quantum Dots: A Versatile Platform for Integrated Optoelectronic Devices.
    Tetsuka H
    Chem Rec; 2020 May; 20(5):429-439. PubMed ID: 31600022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical Investigations of Optical Origins of Fluorescent Graphene Quantum Dots.
    Wang J; Cao S; Ding Y; Ma F; Lu W; Sun M
    Sci Rep; 2016 Apr; 6():24850. PubMed ID: 27094439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oscillations of the bandgap with size in armchair and zigzag graphene quantum dots.
    Saleem Y; Najera Baldo L; Delgado A; Szulakowska L; Hawrylak P
    J Phys Condens Matter; 2019 Jul; 31(30):305503. PubMed ID: 30812024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preferential functionalization on zigzag graphene nanoribbons: first-principles calculations.
    Lee H
    J Phys Condens Matter; 2010 Sep; 22(35):352205. PubMed ID: 21403278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Size and edge dependence of two-photon absorption in rectangular graphene quantum dots.
    Feng X; Qin Y; Liu Y
    Opt Express; 2018 Mar; 26(6):7132-7139. PubMed ID: 29609399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene and silicene quantum dots for nanomedical diagnostics.
    Drissi LB; Ouarrad H; Ramadan FZ; Fritzsche W
    RSC Adv; 2020 Jan; 10(2):801-811. PubMed ID: 35494439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Doping Capabilities of Fluorine on the UV Absorption and Emission Spectra of Pyrene-Based Graphene Quantum Dots.
    Liu B; Aquino AJA; Nachtigallová D; Lischka H
    J Phys Chem A; 2020 Dec; 124(52):10954-10966. PubMed ID: 33325716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tailoring optical and photocatalytic properties of sulfur-doped boron nitride quantum dots via ligand functionalization.
    Cui P; Wu Q
    Nanotechnology; 2024 Feb; 35(17):. PubMed ID: 38334144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of valine-functionalized graphene quantum dots and its use as a novel optical probe for sensitive and selective detection of Hg
    Xiaoyan Z; Zhangyi L; Zaijun L
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Jan; 171():415-424. PubMed ID: 27569775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of graphene's edge energy using hexagonal graphene quantum dots and PM7 method.
    Vorontsov AV; Tretyakov EV
    Phys Chem Chem Phys; 2018 May; 20(21):14740-14752. PubMed ID: 29774909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.