These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 37334979)

  • 21. The electrocortical response to rewarding and aversive feedback: The reward positivity does not reflect salience in simple gambling tasks.
    Mulligan EM; Hajcak G
    Int J Psychophysiol; 2018 Oct; 132(Pt B):262-267. PubMed ID: 29183793
    [TBL] [Abstract][Full Text] [Related]  

  • 22. When theory and biology differ: The relationship between reward prediction errors and expectancy.
    Williams CC; Hassall CD; Trska R; Holroyd CB; Krigolson OE
    Biol Psychol; 2017 Oct; 129():265-272. PubMed ID: 28923360
    [TBL] [Abstract][Full Text] [Related]  

  • 23. When is an error not a prediction error? An electrophysiological investigation.
    Holroyd CB; Krigolson OE; Baker R; Lee S; Gibson J
    Cogn Affect Behav Neurosci; 2009 Mar; 9(1):59-70. PubMed ID: 19246327
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Physical Salience and Value-Driven Salience Operate through Different Neural Mechanisms to Enhance Attentional Selection.
    Bachman MD; Wang L; Gamble ML; Woldorff MG
    J Neurosci; 2020 Jul; 40(28):5455-5464. PubMed ID: 32471878
    [TBL] [Abstract][Full Text] [Related]  

  • 25. When the outcome is different than expected: Subjective expectancy shapes reward prediction error at the FRN level.
    Walentowska W; Severo MC; Moors A; Pourtois G
    Psychophysiology; 2019 Dec; 56(12):e13456. PubMed ID: 31403188
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Oscillatory signatures of reward prediction errors in declarative learning.
    Ergo K; De Loof E; Janssens C; Verguts T
    Neuroimage; 2019 Feb; 186():137-145. PubMed ID: 30391561
    [TBL] [Abstract][Full Text] [Related]  

  • 27. How the Level of Reward Awareness Changes the Computational and Electrophysiological Signatures of Reinforcement Learning.
    Correa CMC; Noorman S; Jiang J; Palminteri S; Cohen MX; Lebreton M; van Gaal S
    J Neurosci; 2018 Nov; 38(48):10338-10348. PubMed ID: 30327418
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Event-Related Potentials Responding to Outcome Valence and Expectancy Violation during Feedback Processing.
    Gu Y; Liu T; Zhang X; Long Q; Hu N; Zhang Y; Chen A
    Cereb Cortex; 2021 Jan; 31(2):1060-1076. PubMed ID: 32995836
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neural dynamics underlying the illusion of control during reward processing.
    Zheng Y; Yang C; Jiang H; Gao B
    Soc Cogn Affect Neurosci; 2024 Oct; 19(1):. PubMed ID: 39300953
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Context dependence of the event-related brain potential associated with reward and punishment.
    Holroyd CB; Larsen JT; Cohen JD
    Psychophysiology; 2004 Mar; 41(2):245-53. PubMed ID: 15032989
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An MEG signature corresponding to an axiomatic model of reward prediction error.
    Talmi D; Fuentemilla L; Litvak V; Duzel E; Dolan RJ
    Neuroimage; 2012 Jan; 59(1):635-45. PubMed ID: 21726648
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Risk prediction error signaling: A two-component response?
    Lauffs MM; Geoghan SA; Favrod O; Herzog MH; Preuschoff K
    Neuroimage; 2020 Jul; 214():116766. PubMed ID: 32247756
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The reward positivity is sensitive to affective liking.
    Brown DR; Jackson TCJ; Cavanagh JF
    Cogn Affect Behav Neurosci; 2022 Apr; 22(2):258-267. PubMed ID: 34599487
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Frontal theta oscillatory activity is a common mechanism for the computation of unexpected outcomes and learning rate.
    Mas-Herrero E; Marco-Pallarés J
    J Cogn Neurosci; 2014 Mar; 26(3):447-58. PubMed ID: 24188368
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrophysiological reward signals predict episodic memory for immediate and delayed positive feedback events.
    Höltje G; Mecklinger A
    Brain Res; 2018 Dec; 1701():64-74. PubMed ID: 30017716
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The importance of agency in human reward processing.
    Hassall CD; Hajcak G; Krigolson OE
    Cogn Affect Behav Neurosci; 2019 Dec; 19(6):1458-1466. PubMed ID: 31187443
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Disentangling performance-monitoring signals encoded in feedback-related EEG dynamics.
    Kirsch F; Kirschner H; Fischer AG; Klein TA; Ullsperger M
    Neuroimage; 2022 Aug; 257():119322. PubMed ID: 35577025
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evidence for parietal reward prediction errors using great grand average meta-analysis.
    Stewardson HJ; Sambrook TD
    Int J Psychophysiol; 2020 Jun; 152():81-86. PubMed ID: 32272127
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An electrophysiological monetary incentive delay (e-MID) task: a way to decompose the different components of neural response to positive and negative monetary reinforcement.
    Broyd SJ; Richards HJ; Helps SK; Chronaki G; Bamford S; Sonuga-Barke EJ
    J Neurosci Methods; 2012 Jul; 209(1):40-9. PubMed ID: 22659003
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recording Neural Reward Signals in a Naturalistic Operant Task Using Mobile-EEG and Augmented Reality.
    Stringfellow JS; Liran O; Lin MH; Baker TE
    eNeuro; 2024 Aug; 11(8):. PubMed ID: 39013585
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.