BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 37335252)

  • 1. Material design, development, and trend for surface-enhanced Raman scattering substrates.
    Ying Y; Tang Z; Liu Y
    Nanoscale; 2023 Jul; 15(26):10860-10881. PubMed ID: 37335252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substrates for Surface-Enhanced Raman Scattering Formed on Nanostructured Non-Metallic Materials: Preparation and Characterization.
    Krajczewski J; Ambroziak R; Kudelski A
    Nanomaterials (Basel); 2020 Dec; 11(1):. PubMed ID: 33396325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Semiconductor-based surface enhanced Raman scattering (SERS): from active materials to performance improvement.
    Wang X; Zhang E; Shi H; Tao Y; Ren X
    Analyst; 2022 Mar; 147(7):1257-1272. PubMed ID: 35253817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SERS as a Probe of Surface Chemistry Enabled by Surface-Accessible Plasmonic Nanomaterials.
    Xu Y; Zhang Y; Li C; Ye Z; Bell SEJ
    Acc Chem Res; 2023 Aug; 56(15):2072-2083. PubMed ID: 37436068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent Advances in 2D Inorganic Nanomaterials for SERS Sensing.
    Karthick Kannan P; Shankar P; Blackman C; Chung CH
    Adv Mater; 2019 Aug; 31(34):e1803432. PubMed ID: 30773698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmonic substrates for biochemical applications of surface-enhanced Raman spectroscopy.
    Michałowska A; Kudelski A
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Mar; 308():123786. PubMed ID: 38128327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmonic surface-enhanced Raman scattering nano-substrates for detection of anionic environmental contaminants: Current progress and future perspectives.
    Kitaw SL; Birhan YS; Tsai HC
    Environ Res; 2023 Mar; 221():115247. PubMed ID: 36640935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface-Enhanced Raman Spectroscopy Substrates for Food Safety and Quality Analysis.
    Nilghaz A; Mahdi Mousavi S; Amiri A; Tian J; Cao R; Wang X
    J Agric Food Chem; 2022 May; 70(18):5463-5476. PubMed ID: 35471937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spotting the driving forces for SERS of two-dimensional nanomaterials.
    Jin J; Guo Z; Fan D; Zhao B
    Mater Horiz; 2023 Apr; 10(4):1087-1104. PubMed ID: 36629521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Review of Recent Progress of Plasmonic Materials and Nano-Structures for Surface-Enhanced Raman Scattering.
    Wang AX; Kong X
    Materials (Basel); 2015 Jun; 8(6):3024-3052. PubMed ID: 26900428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advanced microplastic monitoring using Raman spectroscopy with a combination of nanostructure-based substrates.
    Ly NH; Kim MK; Lee H; Lee C; Son SJ; Zoh KD; Vasseghian Y; Joo SW
    J Nanostructure Chem; 2022; 12(5):865-888. PubMed ID: 35757049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent Advances in Metal Organic Frameworks Based Surface Enhanced Raman Scattering Substrates: Synthesis and Applications.
    Wang P; Sun Y; Li X; Wang L; Xu Y; Li G
    Molecules; 2021 Jan; 26(1):. PubMed ID: 33401623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent progress on graphene-based substrates for surface-enhanced Raman scattering applications.
    Lai H; Xu F; Zhang Y; Wang L
    J Mater Chem B; 2018 Jun; 6(24):4008-4028. PubMed ID: 32255147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward Quantitative Surface-Enhanced Raman Scattering with Plasmonic Nanoparticles: Multiscale View on Heterogeneities in Particle Morphology, Surface Modification, Interface, and Analytical Protocols.
    Son J; Kim GH; Lee Y; Lee C; Cha S; Nam JM
    J Am Chem Soc; 2022 Dec; 144(49):22337-22351. PubMed ID: 36473154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanomaterials meet surface-enhanced Raman scattering towards enhanced clinical diagnosis: a review.
    Yuan K; Jurado-Sánchez B; Escarpa A
    J Nanobiotechnology; 2022 Dec; 20(1):537. PubMed ID: 36544151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal-semiconductor heterostructures for surface-enhanced Raman scattering: synergistic contribution of plasmons and charge transfer.
    Liu Y; Ma H; Han XX; Zhao B
    Mater Horiz; 2021 Feb; 8(2):370-382. PubMed ID: 34821260
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lighting up the Raman signal of molecules in the vicinity of graphene related materials.
    Ling X; Huang S; Deng S; Mao N; Kong J; Dresselhaus MS; Zhang J
    Acc Chem Res; 2015 Jul; 48(7):1862-70. PubMed ID: 26056861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent Advances in Engineered Noble Metal Nanomaterials as a Surface-Enhanced Raman Scattering Active Platform for Cancer Diagnostics.
    Chen Y; Yu F; Wang Y; Liu W; Ye J; Xiao J; Liu X; Jiang H; Wang X
    J Biomed Nanotechnol; 2022 Jan; 18(1):1-23. PubMed ID: 35180897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Latest Novelties on Plasmonic and Non-Plasmonic Nanomaterials for SERS Sensing.
    Barbillon G
    Nanomaterials (Basel); 2020 Jun; 10(6):. PubMed ID: 32575470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micro-/nanostructures for surface-enhanced Raman spectroscopy: Recent advances and perspectives.
    Chen R; Li S; Ren S; Han D; Qin K; Jia X; Zhou H; Gao Z
    Adv Colloid Interface Sci; 2024 Jun; 331():103235. PubMed ID: 38908042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.