BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 37335296)

  • 1. Electrospray Deposition of PEDOT:PSS on Carbon Yarn Electrodes for Solid-State Flexible Supercapacitors.
    Moniz MP; Rafique A; Carmo J; Oliveira JP; Marques A; Ferreira IMM; Baptista AC
    ACS Appl Mater Interfaces; 2023 Jun; 15(25):30727-30741. PubMed ID: 37335296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A free-standing, flexible PEDOT:PSS film and its nanocomposites with graphene nanoplatelets as electrodes for quasi-solid-state supercapacitors.
    Ahmed S; Rafat M; Singh MK; Hashmi SA
    Nanotechnology; 2018 Sep; 29(39):395401. PubMed ID: 29968570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly Flexible and Conductive Cellulose-Mediated PEDOT:PSS/MWCNT Composite Films for Supercapacitor Electrodes.
    Zhao D; Zhang Q; Chen W; Yi X; Liu S; Wang Q; Liu Y; Li J; Li X; Yu H
    ACS Appl Mater Interfaces; 2017 Apr; 9(15):13213-13222. PubMed ID: 28349683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flexible, Transparent and Highly Conductive Polymer Film Electrodes for All-Solid-State Transparent Supercapacitor Applications.
    Guan X; Pan L; Fan Z
    Membranes (Basel); 2021 Oct; 11(10):. PubMed ID: 34677554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrospun Conductive Nanofiber Yarn for a Wearable Yarn Supercapacitor with High Volumetric Energy Density.
    Sun X; He J; Qiang R; Nan N; You X; Zhou Y; Shao W; Liu F; Liu R
    Materials (Basel); 2019 Jan; 12(2):. PubMed ID: 30654431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Performance Supercapacitors from Niobium Nanowire Yarns.
    Mirvakili SM; Mirvakili MN; Englezos P; Madden JD; Hunter IW
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):13882-8. PubMed ID: 26068246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High rate performance of flexible pseudocapacitors fabricated using ionic-liquid-based proton conducting polymer electrolyte with poly(3, 4-ethylenedioxythiophene):poly(styrene sulfonate) and its hydrous ruthenium oxide composite electrodes.
    Sellam ; Hashmi SA
    ACS Appl Mater Interfaces; 2013 May; 5(9):3875-83. PubMed ID: 23548059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-Dimensional Carbon Nitride Nanowire Scaffold for Flexible Supercapacitors.
    Tang Z; Zhang X; Duan L; Wu A; Lü W
    Nanoscale Res Lett; 2019 Mar; 14(1):98. PubMed ID: 30874966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High performance flexible supercapacitors based on secondary doped PEDOT-PSS-graphene nanocomposite films for large area solid state devices.
    Khasim S; Pasha A; Badi N; Lakshmi M; Mishra YK
    RSC Adv; 2020 Mar; 10(18):10526-10539. PubMed ID: 35492922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electronic Booster PEDOT:PSS-Enriched Guar Gum as Eco-Friendly Gel Electrolyte for Supercapacitor.
    Subrahmanya SV; Yethadka SN; G K N
    ACS Omega; 2024 Jun; 9(23):24610-24615. PubMed ID: 38882079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flexible Solid Supercapacitors of Novel Nanostructured Electrodes Outperform Most Supercapacitors.
    Cho S; Lim J; Seo Y
    ACS Omega; 2022 Oct; 7(42):37825-37833. PubMed ID: 36312342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrafast PEDOT:PSS/H
    Kim K; Park J; Lee J; Suh S; Kim W
    ChemSusChem; 2023 Mar; 16(5):e202202057. PubMed ID: 36494894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-Dimensional Flexible All-Organic Conductors for Multifunctional Wearable Applications.
    Moon IK; Yoon S; Lee HU; Kim SW; Oh J
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40580-40592. PubMed ID: 29067808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Conductivity, Flexible and Transparent PEDOT:PSS Electrodes for High Performance Semi-Transparent Supercapacitors.
    Song J; Ma G; Qin F; Hu L; Luo B; Liu T; Yin X; Su Z; Zeng Z; Jiang Y; Wang G; Li Z
    Polymers (Basel); 2020 Feb; 12(2):. PubMed ID: 32075032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Free-Standing Conducting Polymer Films for High-Performance Energy Devices.
    Li Z; Ma G; Ge R; Qin F; Dong X; Meng W; Liu T; Tong J; Jiang F; Zhou Y; Li K; Min X; Huo K; Zhou Y
    Angew Chem Int Ed Engl; 2016 Jan; 55(3):979-82. PubMed ID: 26630234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flexible solid-state supercapacitor based on tin oxide/reduced graphene oxide/bacterial nanocellulose.
    Liu KK; Jiang Q; Kacica C; Derami HG; Biswas P; Singamaneni S
    RSC Adv; 2018 Sep; 8(55):31296-31302. PubMed ID: 35548204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heat-Resistant and High-Performance Solid-State Supercapacitors Based on Poly(
    Liu T; He Z; Liu H; Yang J; Zhang S; Yu J; Ji M; Zhu C; Xu J
    ACS Appl Mater Interfaces; 2021 Apr; 13(15):18100-18109. PubMed ID: 33822588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polymorphous Supercapacitors Constructed from Flexible Three-Dimensional Carbon Network/Polyaniline/MnO
    Wang J; Dong L; Xu C; Ren D; Ma X; Kang F
    ACS Appl Mater Interfaces; 2018 Apr; 10(13):10851-10859. PubMed ID: 29528208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simple and Efficient Synthesis of Ruthenium(III) PEDOT:PSS Complexes for High-Performance Stretchable and Transparent Supercapacitors.
    Liu G; Huang Z; Xu J; Zhang B; Lin T; He P
    Nanomaterials (Basel); 2024 May; 14(10):. PubMed ID: 38786821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Paper-Derived Millimeter-Thick Yarn Supercapacitors Enabling High Volumetric Energy Density.
    Heo YJ; Lee JH; Kim SH; Mun SJ; Lee SY; Park SJ
    ACS Appl Mater Interfaces; 2022 Sep; 14(37):42671-42682. PubMed ID: 36043943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.