BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 3733544)

  • 1. Determinants of neurons-sensory receptor cell interaction during development of the inner ear.
    Van De Water TR
    Hear Res; 1986; 22():265-77. PubMed ID: 3733544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of target tissues on survival and differentiation of mammalian statoacoustic ganglion neurons in organ culture.
    Zhou XN; Van de Water TR
    Acta Otolaryngol; 1987; 104(1-2):90-8. PubMed ID: 3661166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tissue interactions and cell differentiation: neurone-sensory cell interaction during otic development.
    Van de Water TR
    Development; 1988; 103 Suppl():185-93. PubMed ID: 3074908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of removal of the statoacoustic ganglion complex upon the growing otocyst.
    Van De Water TR
    Ann Otol Rhinol Laryngol; 1976; 85(6 Suppl 33 Pt 2):2-31. PubMed ID: 999150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Effect of hair cells and nerve growth factor on the differentiation of neurons of the cochleovestibular ganglion].
    Represa J; Escapa J; Gil-Carcedo L
    An Otorrinolaringol Ibero Am; 1992; 19(1):13-26. PubMed ID: 1554084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synaptogenesis in co-cultured inner ear explants which share a single statoacoustic ganglion.
    Anniko M; Van de Water TR
    Acta Otolaryngol; 1986; 102(5-6):415-22. PubMed ID: 3788541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determinants of ganglion-receptor cell interaction during development of the inner ear. A heterochronic ganglia study.
    Van de Water TR; Galinovic-Schwartz V; Rubin RJ
    Acta Otolaryngol; 1989; 108(3-4):227-37. PubMed ID: 2816337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A possible embryonic mechanism for the establishment of innervation of inner ear sensory structures.
    Van De Water TR; Ruben RJ
    Acta Otolaryngol; 1983; 95(5-6):470-9. PubMed ID: 6880656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Members of the BMP, Shh, and FGF morphogen families promote chicken statoacoustic ganglion neurite outgrowth and neuron survival in vitro.
    Fantetti KN; Fekete DM
    Dev Neurobiol; 2012 Sep; 72(9):1213-28. PubMed ID: 22006861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro differentiation of mouse embryo statoacoustic ganglion and sensory epithelium.
    Raymond J
    Hear Res; 1987; 28(1):45-56. PubMed ID: 3610860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glial but not neuronal development in the cochleo-vestibular ganglion requires Sox10.
    Breuskin I; Bodson M; Thelen N; Thiry M; Borgs L; Nguyen L; Stolt C; Wegner M; Lefebvre PP; Malgrange B
    J Neurochem; 2010 Sep; 114(6):1827-39. PubMed ID: 20626560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EphB receptors influence growth of ephrin-B1-positive statoacoustic nerve fibers.
    Bianchi LM; Gray NA
    Eur J Neurosci; 2002 Oct; 16(8):1499-506. PubMed ID: 12405963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of transient receptor potential channel mucolipin (TRPML) and polycystine (TRPP) in the mouse inner ear.
    Takumida M; Anniko M
    Acta Otolaryngol; 2010 Feb; 130(2):196-203. PubMed ID: 20095091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spiral Ganglion Neuron Projection Development to the Hindbrain in Mice Lacking Peripheral and/or Central Target Differentiation.
    Elliott KL; Kersigo J; Pan N; Jahan I; Fritzsch B
    Front Neural Circuits; 2017; 11():25. PubMed ID: 28450830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Neuronotrophic interactions in the developing inner ear].
    Lefebvre PP; Weber T; Rigo JM; Demanez S; Delree P; Leprince P; Moonen G
    Acta Otorhinolaryngol Belg; 1989; 43(5):403-9. PubMed ID: 2638125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trophic interactions between the cochleovestibular ganglion of the chick embryo and its synaptic targets in culture.
    Ard MD; Morest DK; Hauger SH
    Neuroscience; 1985 Sep; 16(1):151-70. PubMed ID: 3835500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neurogenin 1 null mutant ears develop fewer, morphologically normal hair cells in smaller sensory epithelia devoid of innervation.
    Ma Q; Anderson DJ; Fritzsch B
    J Assoc Res Otolaryngol; 2000 Sep; 1(2):129-43. PubMed ID: 11545141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antibiotics and sensorineural interactions. In vitro studies.
    Anniko M
    Acta Otolaryngol Suppl; 1986; 429():17-21. PubMed ID: 3488638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutant mice reveal the molecular and cellular basis for specific sensory connections to inner ear epithelia and primary nuclei of the brain.
    Fritzsch B; Pauley S; Matei V; Katz DM; Xiang M; Tessarollo L
    Hear Res; 2005 Aug; 206(1-2):52-63. PubMed ID: 16080998
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic Expression of Sox2, Gata3, and Prox1 during Primary Auditory Neuron Development in the Mammalian Cochlea.
    Nishimura K; Noda T; Dabdoub A
    PLoS One; 2017; 12(1):e0170568. PubMed ID: 28118374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.