These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 37335470)

  • 1. K-Mer-Based Genome Size Estimation in Theory and Practice.
    Hesse U
    Methods Mol Biol; 2023; 2672():79-113. PubMed ID: 37335470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of Genome Size in the Endemic Species
    Al-Qurainy F; Gaafar AZ; Khan S; Nadeem M; Alshameri AM; Tarroum M; Alansi S; Almarri NB; Alfarraj NS
    Plants (Basel); 2021 Jul; 10(7):. PubMed ID: 34371565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rooibos (
    Mgwatyu Y; Stander AA; Ferreira S; Williams W; Hesse U
    Plants (Basel); 2020 Feb; 9(2):. PubMed ID: 32085566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. findGSE: estimating genome size variation within human and Arabidopsis using k-mer frequencies.
    Sun H; Ding J; Piednoël M; Schneeberger K
    Bioinformatics; 2018 Feb; 34(4):550-557. PubMed ID: 29444236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Informed and automated k-mer size selection for genome assembly.
    Chikhi R; Medvedev P
    Bioinformatics; 2014 Jan; 30(1):31-7. PubMed ID: 23732276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers.
    Marçais G; Kingsford C
    Bioinformatics; 2011 Mar; 27(6):764-70. PubMed ID: 21217122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. KmerStream: streaming algorithms for k-mer abundance estimation.
    Melsted P; Halldórsson BV
    Bioinformatics; 2014 Dec; 30(24):3541-7. PubMed ID: 25355787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimating the
    Manekar SC; Sathe SR
    Curr Genomics; 2019 Jan; 20(1):2-15. PubMed ID: 31015787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lerna: transformer architectures for configuring error correction tools for short- and long-read genome sequencing.
    Sharma A; Jain P; Mahgoub A; Zhou Z; Mahadik K; Chaterji S
    BMC Bioinformatics; 2022 Jan; 23(1):25. PubMed ID: 34991450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GenomeScope: fast reference-free genome profiling from short reads.
    Vurture GW; Sedlazeck FJ; Nattestad M; Underwood CJ; Fang H; Gurtowski J; Schatz MC
    Bioinformatics; 2017 Jul; 33(14):2202-2204. PubMed ID: 28369201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ntCard: a streaming algorithm for cardinality estimation in genomics data.
    Mohamadi H; Khan H; Birol I
    Bioinformatics; 2017 May; 33(9):1324-1330. PubMed ID: 28453674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. KCOSS: an ultra-fast k-mer counter for assembled genome analysis.
    Tang D; Li Y; Tan D; Fu J; Tang Y; Lin J; Zhao R; Du H; Zhao Z
    Bioinformatics; 2022 Jan; 38(4):933-940. PubMed ID: 34849595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GenomeScope 2.0 and Smudgeplot for reference-free profiling of polyploid genomes.
    Ranallo-Benavidez TR; Jaron KS; Schatz MC
    Nat Commun; 2020 Mar; 11(1):1432. PubMed ID: 32188846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extending assembly of short DNA sequences to handle error.
    Jeck WR; Reinhardt JA; Baltrus DA; Hickenbotham MT; Magrini V; Mardis ER; Dangl JL; Jones CD
    Bioinformatics; 2007 Nov; 23(21):2942-4. PubMed ID: 17893086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new method to compute K-mer frequencies and its application to annotate large repetitive plant genomes.
    Kurtz S; Narechania A; Stein JC; Ware D
    BMC Genomics; 2008 Oct; 9():517. PubMed ID: 18976482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequence repetitiveness quantification and de novo repeat detection by weighted k-mer coverage.
    Feng C; Dai M; Liu Y; Chen M
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32591772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of common k-mers for whole genome sequences using SSB-tree.
    Choi JH; Cho HG
    Genome Inform; 2002; 13():30-41. PubMed ID: 14571372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of de novo transcriptome assembly from high-throughput short read sequencing data improves functional annotation for non-model organisms.
    Haznedaroglu BZ; Reeves D; Rismani-Yazdi H; Peccia J
    BMC Bioinformatics; 2012 Jul; 13():170. PubMed ID: 22808927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A general near-exact k-mer counting method with low memory consumption enables de novo assembly of 106× human sequence data in 2.7 hours.
    Shi CH; Yip KY
    Bioinformatics; 2020 Dec; 36(Suppl_2):i625-i633. PubMed ID: 33381843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. These are not the k-mers you are looking for: efficient online k-mer counting using a probabilistic data structure.
    Zhang Q; Pell J; Canino-Koning R; Howe AC; Brown CT
    PLoS One; 2014; 9(7):e101271. PubMed ID: 25062443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.