These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 37335498)
1. Using ChromEvol to Determine the Mode of Chromosomal Evolution. Escudero M; Maguilla E; Márquez-Corro JI; Martín-Bravo S; Mayrose I; Shafir A; Tan L; Tribble C; Zenil-Ferguson R Methods Mol Biol; 2023; 2672():529-547. PubMed ID: 37335498 [TBL] [Abstract][Full Text] [Related]
2. Cladogenetic and Anagenetic Models of Chromosome Number Evolution: A Bayesian Model Averaging Approach. Freyman WA; Höhna S Syst Biol; 2018 Mar; 67(2):195-215. PubMed ID: 28945917 [TBL] [Abstract][Full Text] [Related]
3. ChromEvol: assessing the pattern of chromosome number evolution and the inference of polyploidy along a phylogeny. Glick L; Mayrose I Mol Biol Evol; 2014 Jul; 31(7):1914-22. PubMed ID: 24710517 [TBL] [Abstract][Full Text] [Related]
4. Inferring Chromosome Number Changes Along a Phylogeny Using chromEvol. Rice A; Mayrose I Methods Mol Biol; 2023; 2545():175-187. PubMed ID: 36720813 [TBL] [Abstract][Full Text] [Related]
5. Drivers of diversification in Linum (Linaceae) by means of chromosome evolution: correlations with biogeography, breeding system and habit. Valdés-Florido A; Tan L; Maguilla E; Simón-Porcar VI; Zhou YH; Arroyo J; Escudero M Ann Bot; 2023 Nov; 132(5):949-962. PubMed ID: 37738171 [TBL] [Abstract][Full Text] [Related]
6. Probabilistic models of chromosome number evolution and the inference of polyploidy. Mayrose I; Barker MS; Otto SP Syst Biol; 2010 Mar; 59(2):132-44. PubMed ID: 20525626 [TBL] [Abstract][Full Text] [Related]
7. Testing the association of phenotypes with polyploidy: An example using herbaceous and woody eudicots. Zenil-Ferguson R; Ponciano JM; Burleigh JG Evolution; 2017 May; 71(5):1138-1148. PubMed ID: 28295270 [TBL] [Abstract][Full Text] [Related]
8. Model adequacy tests for probabilistic models of chromosome-number evolution. Rice A; Mayrose I New Phytol; 2021 Mar; 229(6):3602-3613. PubMed ID: 33226654 [TBL] [Abstract][Full Text] [Related]
9. A non-homogeneous model of chromosome-number evolution to reveal shifts in the transition patterns across the phylogeny. Shafir A; Halabi K; Escudero M; Mayrose I New Phytol; 2023 May; 238(4):1733-1744. PubMed ID: 36759331 [TBL] [Abstract][Full Text] [Related]
10. The Impact of Reconstruction Methods, Phylogenetic Uncertainty and Branch Lengths on Inference of Chromosome Number Evolution in American Daisies (Melampodium, Asteraceae). McCann J; Schneeweiss GM; Stuessy TF; Villaseñor JL; Weiss-Schneeweiss H PLoS One; 2016; 11(9):e0162299. PubMed ID: 27611687 [TBL] [Abstract][Full Text] [Related]
11. Tempo and mode in karyotype evolution revealed by a probabilistic model incorporating both chromosome number and morphology. Yoshida K; Kitano J PLoS Genet; 2021 Apr; 17(4):e1009502. PubMed ID: 33861748 [TBL] [Abstract][Full Text] [Related]
12. Inferring hypothesis-based transitions in clade-specific models of chromosome number evolution in sedges (Cyperaceae). Márquez-Corro JI; Martín-Bravo S; Spalink D; Luceño M; Escudero M Mol Phylogenet Evol; 2019 Jun; 135():203-209. PubMed ID: 30880144 [TBL] [Abstract][Full Text] [Related]
13. A deep dive into the ancestral chromosome number and genome size of flowering plants. Carta A; Bedini G; Peruzzi L New Phytol; 2020 Nov; 228(3):1097-1106. PubMed ID: 32421860 [TBL] [Abstract][Full Text] [Related]
14. Karyotypic changes through dysploidy persist longer over evolutionary time than polyploid changes. Escudero M; Martín-Bravo S; Mayrose I; Fernández-Mazuecos M; Fiz-Palacios O; Hipp AL; Pimentel M; Jiménez-Mejías P; Valcárcel V; Vargas P; Luceño M PLoS One; 2014; 9(1):e85266. PubMed ID: 24416374 [TBL] [Abstract][Full Text] [Related]
15. chromploid: An R package for chromosome number evolution across the plant tree of life. Zenil-Ferguson R; Burleigh JG; Ponciano JM Appl Plant Sci; 2018 Mar; 6(3):e1037. PubMed ID: 29732267 [TBL] [Abstract][Full Text] [Related]
16. Karyotype description of the African weakly electric fish Campylomormyrus compressirostris in the context of chromosome evolution in Osteoglossiformes. Canitz J; Kirschbaum F; Tiedemann R J Physiol Paris; 2016 Oct; 110(3 Pt B):273-280. PubMed ID: 28108417 [TBL] [Abstract][Full Text] [Related]
17. Molecular phylogenetic analyses of nuclear and plastid DNA sequences support dysploid and polyploid chromosome number changes and reticulate evolution in the diversification of Melampodium (Millerieae, Asteraceae). Blöch C; Weiss-Schneeweiss H; Schneeweiss GM; Barfuss MH; Rebernig CA; Villaseñor JL; Stuessy TF Mol Phylogenet Evol; 2009 Oct; 53(1):220-33. PubMed ID: 19272456 [TBL] [Abstract][Full Text] [Related]
18. Complex patterns of ploidy in a holocentric plant clade (Schoenus, Cyperaceae) in the Cape biodiversity hotspot. Elliott TL; Muasya AM; Bureš P Ann Bot; 2023 Feb; 131(1):143-156. PubMed ID: 35226733 [TBL] [Abstract][Full Text] [Related]
19. Combining FISH and model-based predictions to understand chromosome evolution in Typhonium (Araceae). Sousa A; Cusimano N; Renner SS Ann Bot; 2014 Mar; 113(4):669-80. PubMed ID: 24500949 [TBL] [Abstract][Full Text] [Related]