These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Cochlear tuning properties: concurrent basilar membrane and single nerve fiber measurements. Evans EF; Wilson JP Science; 1975 Dec; 190(4220):1218-21. PubMed ID: 1198110 [TBL] [Abstract][Full Text] [Related]
5. Basilar membrane tuning in the cat cochlea. Khanna SM; Leonard DG Science; 1982 Jan; 215(4530):305-6. PubMed ID: 7053580 [No Abstract] [Full Text] [Related]
6. Frequency-dependent self-induced bias of the basilar membrane and its potential for controlling sensitivity and tuning in the mammalian cochlea. LePage EL J Acoust Soc Am; 1987 Jul; 82(1):139-54. PubMed ID: 3624635 [TBL] [Abstract][Full Text] [Related]
7. Homodyne interferometer for basilar membrane measurements. Khanna SM Hear Res; 1986; 23(1):9-26. PubMed ID: 3733555 [TBL] [Abstract][Full Text] [Related]
8. Homodyne interferometer for basilar membrane vibration measurements. II. Hardware and techniques. Khanna SM; Johnson GW; Jacobs J Hear Res; 1986; 23(1):27-36. PubMed ID: 3733550 [TBL] [Abstract][Full Text] [Related]
9. The alteration of the vibration of the basilar membrane produced by loud sound. Patuzzi R; Johnstone BM; Sellick PM Hear Res; 1984 Jan; 13(1):99-100. PubMed ID: 6706867 [No Abstract] [Full Text] [Related]
10. Effect of modulation of basilar membrane position on the cochlear microphonic. Pierson M; Møller A Hear Res; 1980 Mar; 2(2):151-62. PubMed ID: 7364670 [TBL] [Abstract][Full Text] [Related]
11. Mechanical filtering of sound in the inner ear. Brown AM; Gaskill SA; Williams DM Proc Biol Sci; 1992 Oct; 250(1327):29-34. PubMed ID: 1361059 [TBL] [Abstract][Full Text] [Related]
12. Tectorial membrane: a possible effect on frequency analysis in the cochlea. Zwislocki JJ; Kletsky EJ Science; 1979 May; 204(4393):639-41. PubMed ID: 432671 [TBL] [Abstract][Full Text] [Related]
13. Reticular lamina and basilar membrane vibrations in living mouse cochleae. Ren T; He W; Kemp D Proc Natl Acad Sci U S A; 2016 Aug; 113(35):9910-5. PubMed ID: 27516544 [TBL] [Abstract][Full Text] [Related]
14. Wever and Lawrence revisited: effects of nulling basilar membrane movement on concomitant whole-nerve action potential. Offut G J Aud Res; 1986 Jan; 26(1):43-54. PubMed ID: 3610990 [TBL] [Abstract][Full Text] [Related]
15. The source along the basilar membrane of the cochlear microphonic potential recorded by surface electrodes in man. Sohmer H; Kinarti R; Gafni M Electroencephalogr Clin Neurophysiol; 1980 Sep; 49(5-6):506-14. PubMed ID: 6158432 [TBL] [Abstract][Full Text] [Related]
16. Study of neural excitation in the guinea pig cochlea using low-frequency acoustic modulation. Kroin J; Himelfarb M; Strelioff D Otolaryngol Head Neck Surg (1979); 1980; 88(1):93-8. PubMed ID: 7393607 [TBL] [Abstract][Full Text] [Related]
17. Histological evaluation of damage in cat cochleas used for measurement of basilar membrane mechanics. Leonard DG; Khanna SM J Acoust Soc Am; 1984 Feb; 75(2):515-27. PubMed ID: 6699289 [TBL] [Abstract][Full Text] [Related]
18. [Relationship of distortion product in cochlea with cochlear activity revealed by laser interferometry]. Long X; Zhang Y; Lu J; Long C Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2015 Sep; 29(18):1644-7. PubMed ID: 26790268 [TBL] [Abstract][Full Text] [Related]
19. The responses of inner hair cells to basilar membrane velocity during low frequency auditory stimulation in the guinea pig cochlea. Sellick PM; Russell IJ Hear Res; 1980 Jun; 2(3-4):439-45. PubMed ID: 7410248 [TBL] [Abstract][Full Text] [Related]