These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 37335511)
1. A new hybrid PM[Formula: see text] volatility forecasting model based on EMD and machine learning algorithms. Wang P; Bi X; Zhang G; Yu M Environ Sci Pollut Res Int; 2023 Jul; 30(34):82878-82894. PubMed ID: 37335511 [TBL] [Abstract][Full Text] [Related]
2. Forecasting PM 2.5 concentration based on integrating of CEEMDAN decomposition method with SVM and LSTM. Ameri R; Hsu CC; Band SS; Zamani M; Shu CM; Khorsandroo S Ecotoxicol Environ Saf; 2023 Nov; 266():115572. PubMed ID: 37837695 [TBL] [Abstract][Full Text] [Related]
3. A Novel Hybrid Data-Driven Model for Daily Land Surface Temperature Forecasting Using Long Short-Term Memory Neural Network Based on Ensemble Empirical Mode Decomposition. Zhang X; Zhang Q; Zhang G; Nie Z; Gui Z; Que H Int J Environ Res Public Health; 2018 May; 15(5):. PubMed ID: 29883381 [TBL] [Abstract][Full Text] [Related]
4. Heteroscedasticity effects as component to future stock market predictions using RNN-based models. Sadon AN; Ismail S; Khamis A; Tariq MU PLoS One; 2024; 19(5):e0297641. PubMed ID: 38787874 [TBL] [Abstract][Full Text] [Related]
5. A hybrid model for forecasting of particulate matter concentrations based on multiscale characterization and machine learning techniques. Ali Shah SA; Aziz W; Almaraashi M; Ahmed Nadeem MS; Habib N; Shim SO Math Biosci Eng; 2021 Mar; 18(3):1992-2009. PubMed ID: 33892534 [TBL] [Abstract][Full Text] [Related]
6. A New Hybrid Model FPA-SVM Considering Cointegration for Particular Matter Concentration Forecasting: A Case Study of Kunming and Yuxi, China. Li W; Kong D; Wu J Comput Intell Neurosci; 2017; 2017():2843651. PubMed ID: 28932237 [TBL] [Abstract][Full Text] [Related]
7. Multi-step short-term [Formula: see text] forecasting for enactment of proactive environmental regulation strategies. Gul S; Khan GM; Yousaf S Environ Monit Assess; 2022 Apr; 194(5):386. PubMed ID: 35445884 [TBL] [Abstract][Full Text] [Related]
8. A hybrid model for tuberculosis forecasting based on empirical mode decomposition in China. Zhao R; Liu J; Zhao Z; Zhai M; Ren H; Wang X; Li Y; Cui Y; Qiao Y; Ren J; Chen L; Qiu L BMC Infect Dis; 2023 Oct; 23(1):665. PubMed ID: 37805543 [TBL] [Abstract][Full Text] [Related]
9. Daily air quality index forecasting with hybrid models: A case in China. Zhu S; Lian X; Liu H; Hu J; Wang Y; Che J Environ Pollut; 2017 Dec; 231(Pt 2):1232-1244. PubMed ID: 28939124 [TBL] [Abstract][Full Text] [Related]
10. Hybrid systems using residual modeling for sea surface temperature forecasting. de Mattos Neto PSG; Cavalcanti GDC; de O Santos Júnior DS; Silva EG Sci Rep; 2022 Jan; 12(1):487. PubMed ID: 35017537 [TBL] [Abstract][Full Text] [Related]
11. Combined model of air quality index forecasting based on the combination of complementary empirical mode decomposition and sequence reconstruction. Wang W; Tang Q Environ Pollut; 2023 Jan; 316(Pt 2):120628. PubMed ID: 36370980 [TBL] [Abstract][Full Text] [Related]
12. Air Pollutant Concentration Forecasting Using Long Short-Term Memory Based on Wavelet Transform and Information Gain: A Case Study of Beijing. Liu B; Guo X; Lai M; Wang Q Comput Intell Neurosci; 2020; 2020():8834699. PubMed ID: 33061948 [TBL] [Abstract][Full Text] [Related]
13. A novel hybrid model based on two-stage data processing and machine learning for forecasting chlorophyll-a concentration in reservoirs. Yu W; Wang X; Jiang X; Zhao R; Zhao S Environ Sci Pollut Res Int; 2024 Jan; 31(1):262-279. PubMed ID: 38015396 [TBL] [Abstract][Full Text] [Related]
14. LSTM-GARCH Hybrid Model for the Prediction of Volatility in Cryptocurrency Portfolios. García-Medina A; Aguayo-Moreno E Comput Econ; 2023 Mar; ():1-32. PubMed ID: 37362593 [TBL] [Abstract][Full Text] [Related]
15. Long short-term memory neural network for air pollutant concentration predictions: Method development and evaluation. Li X; Peng L; Yao X; Cui S; Hu Y; You C; Chi T Environ Pollut; 2017 Dec; 231(Pt 1):997-1004. PubMed ID: 28898956 [TBL] [Abstract][Full Text] [Related]
16. Integration of complete ensemble empirical mode decomposition with deep long short-term memory model for particulate matter concentration prediction. Fu M; Le C; Fan T; Prakapovich R; Manko D; Dmytrenko O; Lande D; Shahid S; Yaseen ZM Environ Sci Pollut Res Int; 2021 Dec; 28(45):64818-64829. PubMed ID: 34318419 [TBL] [Abstract][Full Text] [Related]
17. Short-term prediction of PM2.5 concentration by hybrid neural network based on sequence decomposition. Wu X; Zhu J; Wen Q PLoS One; 2024; 19(5):e0299603. PubMed ID: 38728371 [TBL] [Abstract][Full Text] [Related]
18. A novel hybrid model for six main pollutant concentrations forecasting based on improved LSTM neural networks. Xu S; Li W; Zhu Y; Xu A Sci Rep; 2022 Aug; 12(1):14434. PubMed ID: 36002466 [TBL] [Abstract][Full Text] [Related]
19. Optimized air quality management based on air quality index prediction and air pollutants identification in representative cities in China. Guo Z; Jing X; Ling Y; Yang Y; Jing N; Yuan R; Liu Y Sci Rep; 2024 Aug; 14(1):17923. PubMed ID: 39095454 [TBL] [Abstract][Full Text] [Related]
20. Crude oil prices and volatility prediction by a hybrid model based on kernel extreme learning machine. Niu H; Zhao Y Math Biosci Eng; 2021 Sep; 18(6):8096-8122. PubMed ID: 34814291 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]