BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 37335676)

  • 21. Deep learning reconstruction for 1.5 T cervical spine MRI: effect on interobserver agreement in the evaluation of degenerative changes.
    Yasaka K; Tanishima T; Ohtake Y; Tajima T; Akai H; Ohtomo K; Abe O; Kiryu S
    Eur Radiol; 2022 Sep; 32(9):6118-6125. PubMed ID: 35348861
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deep learning reconstruction allows for usage of contrast agent of lower concentration for coronary CTA than filtered back projection and hybrid iterative reconstruction.
    Otgonbaatar C; Ryu JK; Shin J; Kim HM; Seo JW; Shim H; Hwang DH
    Acta Radiol; 2023 Mar; 64(3):1007-1017. PubMed ID: 35979586
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Image Quality and Lesion Detectability of Pancreatic Phase Thin-Slice Computed Tomography Images With a Deep Learning-Based Reconstruction Algorithm.
    Nakamoto A; Onishi H; Tsuboyama T; Fukui H; Ota T; Ogawa K; Yano K; Kiso K; Honda T; Tatsumi M; Tomiyama N
    J Comput Assist Tomogr; 2023 Sep-Oct 01; 47(5):698-703. PubMed ID: 37707398
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vivo depiction of cortical bone vascularization with ultra-high resolution-CT and deep learning algorithm reconstruction using osteoid osteoma as a model.
    Boubaker F; Teixeira PAG; Hossu G; Douis N; Gillet P; Blum A; Gillet R
    Diagn Interv Imaging; 2024 Jan; 105(1):26-32. PubMed ID: 37482455
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Image quality and radiologists' subjective acceptance using model-based iterative and deep learning reconstructions as adjuncts to ultrahigh-resolution CT in low-dose contrast-enhanced abdominopelvic CT: phantom and clinical pilot studies.
    Nishikawa M; Machida H; Shimizu Y; Kariyasu T; Morisaka H; Adachi T; Nakai T; Sakaguchi K; Saito S; Matsumoto S; Koyanagi M; Yokoyama K
    Abdom Radiol (NY); 2022 Feb; 47(2):891-902. PubMed ID: 34914007
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effectiveness of deep learning reconstruction on standard to ultra-low-dose high-definition chest CT images.
    Hamabuchi N; Ohno Y; Kimata H; Ito Y; Fujii K; Akino N; Takenaka D; Yoshikawa T; Oshima Y; Matsuyama T; Nagata H; Ueda T; Ikeda H; Ozawa Y; Toyama H
    Jpn J Radiol; 2023 Dec; 41(12):1373-1388. PubMed ID: 37498483
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Value of deep learning reconstruction of chest low-dose CT for image quality improvement and lung parenchyma assessment on lung window.
    Wang J; Sui X; Zhao R; Du H; Wang J; Wang Y; Qin R; Lu X; Ma Z; Xu Y; Jin Z; Song L; Song W
    Eur Radiol; 2024 Feb; 34(2):1053-1064. PubMed ID: 37581663
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deep learning reconstruction of drip-infusion cholangiography acquired with ultra-high-resolution computed tomography.
    Narita K; Nakamura Y; Higaki T; Akagi M; Honda Y; Awai K
    Abdom Radiol (NY); 2020 Sep; 45(9):2698-2704. PubMed ID: 32248261
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Clinical acceptance of deep learning reconstruction for abdominal CT imaging: objective and subjective image quality and low-contrast detectability assessment.
    Bornet PA; Villani N; Gillet R; Germain E; Lombard C; Blum A; Gondim Teixeira PA
    Eur Radiol; 2022 May; 32(5):3161-3172. PubMed ID: 34989850
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deep learning image reconstruction for improvement of image quality of abdominal computed tomography: comparison with hybrid iterative reconstruction.
    Ichikawa Y; Kanii Y; Yamazaki A; Nagasawa N; Nagata M; Ishida M; Kitagawa K; Sakuma H
    Jpn J Radiol; 2021 Jun; 39(6):598-604. PubMed ID: 33449305
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improving Image Quality and Reducing Radiation Dose for Pediatric CT by Using Deep Learning Reconstruction.
    Brady SL; Trout AT; Somasundaram E; Anton CG; Li Y; Dillman JR
    Radiology; 2021 Jan; 298(1):180-188. PubMed ID: 33201790
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prediction of Anemia From Cerebral Venous Sinus Attenuation on Deep-Learning Reconstructed Brain Computed Tomography Images.
    Yamakuni R; Sekino H; Saito M; Kakamu T; Takahashi K; Hara J; Suenaga H; Ishii S; Fukushima K; Ito H
    J Comput Assist Tomogr; 2023 Sep-Oct 01; 47(5):796-805. PubMed ID: 37707411
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Detection of urinary tract calculi on CT images reconstructed with deep learning algorithms.
    Thapaliya S; Brady SL; Somasundaram E; Anton CG; Coley BD; Towbin AJ; Zhang B; Dillman JR; Trout AT
    Abdom Radiol (NY); 2022 Jan; 47(1):265-271. PubMed ID: 34605964
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Superior objective and subjective image quality of deep learning reconstruction for low-dose abdominal CT imaging in comparison with model-based iterative reconstruction and filtered back projection.
    Tamura A; Mukaida E; Ota Y; Kamata M; Abe S; Yoshioka K
    Br J Radiol; 2021 Jul; 94(1123):20201357. PubMed ID: 34142867
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Low-dose whole-body CT using deep learning image reconstruction: image quality and lesion detection.
    Noda Y; Kaga T; Kawai N; Miyoshi T; Kawada H; Hyodo F; Kambadakone A; Matsuo M
    Br J Radiol; 2021 May; 94(1121):20201329. PubMed ID: 33571010
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deep learning reconstruction of equilibrium phase CT images in obese patients.
    Akagi M; Nakamura Y; Higaki T; Narita K; Honda Y; Awai K
    Eur J Radiol; 2020 Dec; 133():109349. PubMed ID: 33152626
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improved image quality and dose reduction in abdominal CT with deep-learning reconstruction algorithm: a phantom study.
    Greffier J; Durand Q; Frandon J; Si-Mohamed S; Loisy M; de Oliveira F; Beregi JP; Dabli D
    Eur Radiol; 2023 Jan; 33(1):699-710. PubMed ID: 35864348
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deep Learning Reconstruction at CT: Phantom Study of the Image Characteristics.
    Higaki T; Nakamura Y; Zhou J; Yu Z; Nemoto T; Tatsugami F; Awai K
    Acad Radiol; 2020 Jan; 27(1):82-87. PubMed ID: 31818389
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Radiation dose optimization potential of deep learning-based reconstruction for multiphase hepatic CT: A clinical and phantom study.
    Nagayama Y; Goto M; Sakabe D; Emoto T; Shigematsu S; Taguchi N; Maruyama N; Takada S; Uchimura R; Hayashi H; Kidoh M; Oda S; Nakaura T; Funama Y; Hatemura M; Hirai T
    Eur J Radiol; 2022 Jun; 151():110280. PubMed ID: 35381567
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of moyamoya disease in CT angiography using ultra-high-resolution computed tomography: Application of deep learning reconstruction.
    Fukushima Y; Fushimi Y; Funaki T; Sakata A; Hinoda T; Nakajima S; Sakamoto R; Yoshida K; Miyamoto S; Nakamoto Y
    Eur J Radiol; 2022 Jun; 151():110294. PubMed ID: 35427840
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.