These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 37335792)
1. A Portable Chip-Based NMR Relaxometry System With Arbitrary Phase Control for Point-of-Care Blood Analysis. Dreyer F; Yang Q; Alnajjar B; Kruger D; Blumich B; Anders J IEEE Trans Biomed Circuits Syst; 2023 Aug; 17(4):831-842. PubMed ID: 37335792 [TBL] [Abstract][Full Text] [Related]
2. A portable NMR platform with arbitrary phase control and temperature compensation. Yang Q; Zhao J; Dreyer F; Krüger D; Anders J Magn Reson (Gott); 2022; 3(1):77-90. PubMed ID: 37905179 [TBL] [Abstract][Full Text] [Related]
3. A fully integrated IQ-receiver for NMR microscopy. Anders J; SanGiorgio P; Boero G J Magn Reson; 2011 Mar; 209(1):1-7. PubMed ID: 21257327 [TBL] [Abstract][Full Text] [Related]
4. A low-power high-sensitivity single-chip receiver for NMR microscopy. Anders J; Handwerker J; Ortmanns M; Boero G J Magn Reson; 2016 May; 266():41-50. PubMed ID: 27011023 [TBL] [Abstract][Full Text] [Related]
5. Development of miniaturized, portable magnetic resonance relaxometry system for point-of-care medical diagnosis. Peng WK; Chen L; Han J Rev Sci Instrum; 2012 Sep; 83(9):095115. PubMed ID: 23020427 [TBL] [Abstract][Full Text] [Related]
6. Oxygen saturation-dependent effects on blood transverse relaxation at low fields. Thomas DG; Galvosas P; Tzeng YC; Harrison FG; Berry MJ; Teal PD; Wright GA; Obruchkov S MAGMA; 2022 Oct; 35(5):805-815. PubMed ID: 35107697 [TBL] [Abstract][Full Text] [Related]
7. A single-sided magnet for deep-depth fat quantification. Wang Y; Xu Y; Zhang M; Emmanuel Komolafe T; Wang W; Luo H; Chen X; Yang X; Wu Z J Magn Reson; 2021 Oct; 331():107053. PubMed ID: 34428727 [TBL] [Abstract][Full Text] [Related]
8. Dehydration assessment via a portable, single sided magnetic resonance sensor. Bashyam A; Frangieh CJ; Li M; Cima MJ Magn Reson Med; 2020 Apr; 83(4):1390-1404. PubMed ID: 31631380 [TBL] [Abstract][Full Text] [Related]
9. Acquiring and processing ultrafast biomolecular 2D NMR experiments using a referenced-based correction. Seginer A; Olsen GL; Frydman L J Biomol NMR; 2016 Oct; 66(2):141-157. PubMed ID: 27683189 [TBL] [Abstract][Full Text] [Related]
10. High resolution NMR imaging using a high field yokeless permanent magnet. Kose K; Haishi T Magn Reson Med Sci; 2011; 10(3):159-67. PubMed ID: 21959998 [TBL] [Abstract][Full Text] [Related]
17. A Noise-Reduced Light-to-Frequency Converter for Sub-0.1% Perfusion Index Blood SpO[Formula: see text] Sensing. Tang F; Li Z; Yang T; Zhang L; Zhou X; Hu S; Lin Z; Li P; Wang B; Bermak A IEEE Trans Biomed Circuits Syst; 2020 Oct; 14(5):931-941. PubMed ID: 32746360 [TBL] [Abstract][Full Text] [Related]
18. A Low-Power High-Dynamic-Range Receiver System for In-Probe 3-D Ultrasonic Imaging. Attarzadeh H; Xu Y; Ytterdal T IEEE Trans Biomed Circuits Syst; 2017 Oct; 11(5):1053-1064. PubMed ID: 28727563 [TBL] [Abstract][Full Text] [Related]
19. 3D magnetic resonance fingerprinting on a low-field 50 mT point-of-care system prototype: evaluation of muscle and lipid relaxation time mapping and comparison with standard techniques. O'Reilly T; Börnert P; Liu H; Webb A; Koolstra K MAGMA; 2023 Jul; 36(3):499-512. PubMed ID: 37202655 [TBL] [Abstract][Full Text] [Related]
20. A broadband single-chip transceiver for multi-nuclear NMR probes. Grisi M; Gualco G; Boero G Rev Sci Instrum; 2015 Apr; 86(4):044703. PubMed ID: 25933876 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]