BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 37335801)

  • 1. PUGAN: Physical Model-Guided Underwater Image Enhancement Using GAN With Dual-Discriminators.
    Cong R; Yang W; Zhang W; Li C; Guo CL; Huang Q; Kwong S
    IEEE Trans Image Process; 2023; 32():4472-4485. PubMed ID: 37335801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Underwater Image Enhancement via Medium Transmission-Guided Multi-Color Space Embedding.
    Li C; Anwar S; Hou J; Cong R; Guo C; Ren W
    IEEE Trans Image Process; 2021; 30():4985-5000. PubMed ID: 33961554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Underwater Image Enhancement via Minimal Color Loss and Locally Adaptive Contrast Enhancement.
    Zhang W; Zhuang P; Sun H; Li G; Kwong S; Li C
    IEEE Trans Image Process; 2022 Jun; PP():. PubMed ID: 35657839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. U-Shape Transformer for Underwater Image Enhancement.
    Peng L; Zhu C; Bian L
    IEEE Trans Image Process; 2023; 32():3066-3079. PubMed ID: 37200123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Underwater Image Enhancement Method for a Preprocessing Framework Based on Generative Adversarial Network.
    Jiang X; Yu H; Zhang Y; Pan M; Li Z; Liu J; Lv S
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SGUIE-Net: Semantic Attention Guided Underwater Image Enhancement with Multi-Scale Perception.
    Qi Q; Li K; Zheng H; Gao X; Hou G; Sun K
    IEEE Trans Image Process; 2022 Oct; PP():. PubMed ID: 36288230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Underwater image enhancement using Divide-and-Conquer network.
    Zheng S; Wang R; Chen G; Huang Z; Teng Y; Wang L; Liu Z
    PLoS One; 2024; 19(3):e0294609. PubMed ID: 38442130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Cascaded Multimodule Image Enhancement Framework for Underwater Visual Perception.
    Liu H; Ding Y; Zeng H; Pu H; Luo J; Fan B
    IEEE Trans Neural Netw Learn Syst; 2024 May; PP():. PubMed ID: 38771687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Twin Adversarial Contrastive Learning for Underwater Image Enhancement and Beyond.
    Liu R; Jiang Z; Yang S; Fan X
    IEEE Trans Image Process; 2022; 31():4922-4936. PubMed ID: 35849672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. UIF: An Objective Quality Assessment for Underwater Image Enhancement.
    Zheng Y; Chen W; Lin R; Zhao T; Le Callet P
    IEEE Trans Image Process; 2022; 31():5456-5468. PubMed ID: 35951566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks.
    Zhang H; Xu T; Li H; Zhang S; Wang X; Huang X; Metaxas DN
    IEEE Trans Pattern Anal Mach Intell; 2019 Aug; 41(8):1947-1962. PubMed ID: 30010548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DRGAN: Dense Residual Generative Adversarial Network for Image Enhancement in an Underwater Autonomous Driving Device.
    Qian J; Li H; Zhang B; Lin S; Xing X
    Sensors (Basel); 2023 Oct; 23(19):. PubMed ID: 37837125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual-path joint correction network for underwater image enhancement.
    Zhang D; Shen J; Zhou J; Chen E; Zhang W
    Opt Express; 2022 Aug; 30(18):33412-33432. PubMed ID: 36242379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An effective transformer based on dual attention fusion for underwater image enhancement.
    Hu X; Liu J; Li H; Liu H; Xue X
    PeerJ Comput Sci; 2024; 10():e1783. PubMed ID: 38855239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An optimized GAN method based on the Que-Attn and contrastive learning for underwater image enhancement.
    Lan Z; Zhou B; Zhao W; Wang S
    PLoS One; 2023; 18(1):e0279945. PubMed ID: 36607967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. HybrUR: A Hybrid Physical-Neural Solution for Unsupervised Underwater Image Restoration.
    Yan S; Chen X; Wu Z; Tan M; Yu J
    IEEE Trans Image Process; 2023; 32():5004-5016. PubMed ID: 37656642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Underwater Image Enhancement Method for Different Illumination Conditions Based on Color Tone Correction and Fusion-Based Descattering.
    Liu Y; Xu H; Shang D; Li C; Quan X
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31888303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Underwater low-light enhancement network based on bright channel prior and attention mechanism.
    Zheng Z; Huang X; Wang L
    PLoS One; 2023; 18(2):e0281093. PubMed ID: 36730132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generative Dual-Adversarial Network With Spectral Fidelity and Spatial Enhancement for Hyperspectral Pansharpening.
    Dong W; Hou S; Xiao S; Qu J; Du Q; Li Y
    IEEE Trans Neural Netw Learn Syst; 2022 Dec; 33(12):7303-7317. PubMed ID: 34111007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unified Generative Adversarial Networks for Controllable Image-to-Image Translation.
    Tang H; Liu H; Sebe N
    IEEE Trans Image Process; 2020 Sep; PP():. PubMed ID: 32915739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.