BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 37335863)

  • 1. HiCLift: a fast and efficient tool for converting chromatin interaction data between genome assemblies.
    Wang X; Yue F
    Bioinformatics; 2023 Jun; 39(6):. PubMed ID: 37335863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HiCLift: A fast and efficient tool for converting chromatin interaction data between genome assemblies.
    Wang X; Yue F
    bioRxiv; 2023 Jan; ():. PubMed ID: 36712087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FastRemap: a tool for quickly remapping reads between genome assemblies.
    Kim JS; Firtina C; Cavlak MB; Senol Cali D; Alkan C; Mutlu O
    Bioinformatics; 2022 Sep; 38(19):4633-4635. PubMed ID: 35976109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SQUAT: a Sequencing Quality Assessment Tool for data quality assessments of genome assemblies.
    Yang LA; Chang YJ; Chen SH; Lin CY; Ho JM
    BMC Genomics; 2019 Apr; 19(Suppl 9):238. PubMed ID: 30999844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ARCS: scaffolding genome drafts with linked reads.
    Yeo S; Coombe L; Warren RL; Chu J; Birol I
    Bioinformatics; 2018 Mar; 34(5):725-731. PubMed ID: 29069293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CrossMap: a versatile tool for coordinate conversion between genome assemblies.
    Zhao H; Sun Z; Wang J; Huang H; Kocher JP; Wang L
    Bioinformatics; 2014 Apr; 30(7):1006-7. PubMed ID: 24351709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ARKS: chromosome-scale scaffolding of human genome drafts with linked read kmers.
    Coombe L; Zhang J; Vandervalk BP; Chu J; Jackman SD; Birol I; Warren RL
    BMC Bioinformatics; 2018 Jun; 19(1):234. PubMed ID: 29925315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GAPPadder: a sensitive approach for closing gaps on draft genomes with short sequence reads.
    Chu C; Li X; Wu Y
    BMC Genomics; 2019 Jun; 20(Suppl 5):426. PubMed ID: 31167639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A spectral algorithm for fast de novo layout of uncorrected long nanopore reads.
    Recanati A; Brüls T; d'Aspremont A
    Bioinformatics; 2017 Oct; 33(20):3188-3194. PubMed ID: 28605450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LR_Gapcloser: a tiling path-based gap closer that uses long reads to complete genome assembly.
    Xu GC; Xu TJ; Zhu R; Zhang Y; Li SQ; Wang HW; Li JT
    Gigascience; 2019 Jan; 8(1):. PubMed ID: 30576505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tigmint: correcting assembly errors using linked reads from large molecules.
    Jackman SD; Coombe L; Chu J; Warren RL; Vandervalk BP; Yeo S; Xue Z; Mohamadi H; Bohlmann J; Jones SJM; Birol I
    BMC Bioinformatics; 2018 Oct; 19(1):393. PubMed ID: 30367597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Benchmarking multi-platform sequencing technologies for human genome assembly.
    Wang J; Veldsman WP; Fang X; Huang Y; Xie X; Lyu A; Zhang L
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37594299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anchored pseudo-de novo assembly of human genomes identifies extensive sequence variation from unmapped sequence reads.
    Faber-Hammond JJ; Brown KH
    Hum Genet; 2016 Jul; 135(7):727-40. PubMed ID: 27061184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AFRESh: an adaptive framework for compression of reads and assembled sequences with random access functionality.
    Paridaens T; Van Wallendael G; De Neve W; Lambert P
    Bioinformatics; 2017 May; 33(10):1464-1472. PubMed ID: 28057687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subset selection of high-depth next generation sequencing reads for de novo genome assembly using MapReduce framework.
    Fang CH; Chang YJ; Chung WC; Hsieh PH; Lin CY; Ho JM
    BMC Genomics; 2015; 16 Suppl 12(Suppl 12):S9. PubMed ID: 26678408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. scanPAV: a pipeline for extracting presence-absence variations in genome pairs.
    Giordano F; Stammnitz MR; Murchison EP; Ning Z
    Bioinformatics; 2018 Sep; 34(17):3022-3024. PubMed ID: 29608694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NucBreak: location of structural errors in a genome assembly by using paired-end Illumina reads.
    Khelik K; Sandve GK; Nederbragt AJ; Rognes T
    BMC Bioinformatics; 2020 Feb; 21(1):66. PubMed ID: 32085722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MsPAC: a tool for haplotype-phased structural variant detection.
    Rodriguez OL; Ritz A; Sharp AJ; Bashir A
    Bioinformatics; 2020 Feb; 36(3):922-924. PubMed ID: 31397844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BCFtools/liftover: an accurate and comprehensive tool to convert genetic variants across genome assemblies.
    Genovese G; Rockweiler NB; Gorman BR; Bigdeli TB; Pato MT; Pato CN; Ichihara K; McCarroll SA
    Bioinformatics; 2024 Jan; 40(2):. PubMed ID: 38261650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accelerating 3D genomics data analysis with Microcket.
    Zhao Y; Yang M; Gong F; Pan Y; Hu M; Peng Q; Lu L; Lyu X; Sun K
    Commun Biol; 2024 Jun; 7(1):675. PubMed ID: 38824179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.