These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 37336047)
1. The loss of crude oil droplets by filter feeders and the role of surfactants. Letendre F; Ramos PAS; Cameron CB Mar Pollut Bull; 2023 Aug; 193():115174. PubMed ID: 37336047 [TBL] [Abstract][Full Text] [Related]
2. The capture of crude oil droplets by filter feeders at high and low Reynolds numbers. Letendre F; Cameron CB J Exp Biol; 2022 Apr; 225(8):. PubMed ID: 35389496 [TBL] [Abstract][Full Text] [Related]
3. The interactions of oil droplets with filter feeders: A fluid mechanics approach. Letendre F; Mehrabian S; Etienne S; Cameron CB Mar Environ Res; 2020 Oct; 161():105059. PubMed ID: 32662422 [TBL] [Abstract][Full Text] [Related]
4. Oil droplet ingestion and oil fouling in the copepod Calanus finmarchicus exposed to mechanically and chemically dispersed crude oil. Nordtug T; Olsen AJ; Salaberria I; Øverjordet IB; Altin D; Størdal IF; Hansen BH Environ Toxicol Chem; 2015 Aug; 34(8):1899-906. PubMed ID: 25855587 [TBL] [Abstract][Full Text] [Related]
5. Modeling filtration of dispersed crude oil droplets by the copepod Calanus finmarchicus. Nepstad R; Størdal IF; Brönner U; Nordtug T; Hansen BH Mar Environ Res; 2015 Apr; 105():1-7. PubMed ID: 25636164 [TBL] [Abstract][Full Text] [Related]
6. How to Regulate the Migration Ability of Emulsions in Micro-Scale Pores: Droplet Size or Membrane Strength? Sun Q; Zhou ZH; Han L; Zou XY; Li GQ; Zhang Q; Zhang F; Zhang L; Zhang L Molecules; 2023 Feb; 28(4):. PubMed ID: 36838667 [TBL] [Abstract][Full Text] [Related]
7. The role of dispersants' dynamic interfacial tension in effective crude oil spill dispersion. Riehm DA; McCormick AV Mar Pollut Bull; 2014 Jul; 84(1-2):155-63. PubMed ID: 24889318 [TBL] [Abstract][Full Text] [Related]
8. How much crude oil can zooplankton ingest? Estimating the quantity of dispersed crude oil defecated by planktonic copepods. Almeda R; Connelly TL; Buskey EJ Environ Pollut; 2016 Jan; 208(Pt B):645-54. PubMed ID: 26586632 [TBL] [Abstract][Full Text] [Related]
9. An efficient and environmental-friendly dispersant based on the synergy of amphiphilic surfactants for oil spill remediation. Jin J; Wang H; Jing Y; Liu M; Wang D; Li Y; Bao M Chemosphere; 2019 Jan; 215():241-247. PubMed ID: 30317095 [TBL] [Abstract][Full Text] [Related]
10. Droplet breakup in subsurface oil releases--part 1: experimental study of droplet breakup and effectiveness of dispersant injection. Brandvik PJ; Johansen Ø; Leirvik F; Farooq U; Daling PS Mar Pollut Bull; 2013 Aug; 73(1):319-26. PubMed ID: 23796665 [TBL] [Abstract][Full Text] [Related]
11. Parallel quantitation of salt dioctyl sodium sulfosuccinate (DOSS) and fingerprinting analysis of dispersed oil in aqueous samples. Yang C; Fieldhouse B; Waldie A; Yang Z; Hollebone B; Lambert P; Beaulac V J Hazard Mater; 2022 Aug; 435():129046. PubMed ID: 35650724 [TBL] [Abstract][Full Text] [Related]
12. Vertical mixing of oil droplets by breaking waves. Tkalich P; Chan ES Mar Pollut Bull; 2002 Nov; 44(11):1219-29. PubMed ID: 12523520 [TBL] [Abstract][Full Text] [Related]
13. Oil slicks on water surface: Breakup, coalescence, and droplet formation under breaking waves. Nissanka ID; Yapa PD Mar Pollut Bull; 2017 Jan; 114(1):480-493. PubMed ID: 27745739 [TBL] [Abstract][Full Text] [Related]
14. Interfacial adsorption and surfactant release characteristics of magnetically functionalized halloysite nanotubes for responsive emulsions. Owoseni O; Nyankson E; Zhang Y; Adams DJ; He J; Spinu L; McPherson GL; Bose A; Gupta RB; John VT J Colloid Interface Sci; 2016 Feb; 463():288-98. PubMed ID: 26555959 [TBL] [Abstract][Full Text] [Related]
15. Adhesion of mechanically and chemically dispersed crude oil droplets to eggs of Atlantic cod (Gadus morhua) and haddock (Melanogrammus aeglefinus). Hansen BH; Sørensen L; Carvalho PA; Meier S; Booth AM; Altin D; Farkas J; Nordtug T Sci Total Environ; 2018 Nov; 640-641():138-143. PubMed ID: 29859431 [TBL] [Abstract][Full Text] [Related]
16. Biosurfactant-modified palygorskite clay as solid-stabilizers for effective oil spill dispersion. Chen D; Wang A; Li Y; Hou Y; Wang Z Chemosphere; 2019 Jul; 226():1-7. PubMed ID: 30908963 [TBL] [Abstract][Full Text] [Related]
17. Release of surfactant cargo from interfacially-active halloysite clay nanotubes for oil spill remediation. Owoseni O; Nyankson E; Zhang Y; Adams SJ; He J; McPherson GL; Bose A; Gupta RB; John VT Langmuir; 2014 Nov; 30(45):13533-41. PubMed ID: 25346266 [TBL] [Abstract][Full Text] [Related]
18. Do oil droplets and chemical dispersants contribute to uptake of oil compounds and toxicity of crude oil dispersions in cold-water copepods? Hansen BH; Altin D; Nordtug T J Toxicol Environ Health A; 2025 Jan; 88(2):67-84. PubMed ID: 37870159 [TBL] [Abstract][Full Text] [Related]
19. An algorithm for modeling entrainment and naturally and chemically dispersed oil droplet size distribution under surface breaking wave conditions. Li Z; Spaulding ML; French-McCay D Mar Pollut Bull; 2017 Jun; 119(1):145-152. PubMed ID: 28365022 [TBL] [Abstract][Full Text] [Related]
20. Assessment of spilled oil dispersion affected by dispersant: Characteristic, stability, and related mechanism. Fu H; Liu W; Sun X; Zhang F; Wei J; Li Y; Li Y; Lu J; Bao M J Environ Manage; 2024 May; 358():120888. PubMed ID: 38615399 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]