These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 37336062)
1. BiGRUD-SA: Protein S-sulfenylation sites prediction based on BiGRU and self-attention. Zhang T; Jia J; Chen C; Zhang Y; Yu B Comput Biol Med; 2023 Sep; 163():107145. PubMed ID: 37336062 [TBL] [Abstract][Full Text] [Related]
2. Fu-SulfPred: Identification of Protein S-sulfenylation Sites by Fusing Forests via Chou's General PseAAC. Wang L; Zhang R; Mu Y J Theor Biol; 2019 Jan; 461():51-58. PubMed ID: 30365947 [TBL] [Abstract][Full Text] [Related]
3. SOHSite: incorporating evolutionary information and physicochemical properties to identify protein S-sulfenylation sites. Bui VM; Weng SL; Lu CT; Chang TH; Weng JT; Lee TY BMC Genomics; 2016 Jan; 17 Suppl 1(Suppl 1):9. PubMed ID: 26819243 [TBL] [Abstract][Full Text] [Related]
4. Prediction of S-sulfenylation sites using mRMR feature selection and fuzzy support vector machine algorithm. Ju Z; Wang SY J Theor Biol; 2018 Nov; 457():6-13. PubMed ID: 30125576 [TBL] [Abstract][Full Text] [Related]
5. DeepSSPred: A Deep Learning Based Sulfenylation Site Predictor Via a Novel nSegmented Optimize Federated Feature Encoder. Khan ZU; Pi D Protein Pept Lett; 2021; 28(6):708-721. PubMed ID: 33267753 [TBL] [Abstract][Full Text] [Related]
6. A Comprehensive Review of In silico Analysis for Protein S-sulfenylation Sites. Hasan MM; Khatun MS; Kurata H Protein Pept Lett; 2018; 25(9):815-821. PubMed ID: 30182830 [TBL] [Abstract][Full Text] [Related]
7. SVM-SulfoSite: A support vector machine based predictor for sulfenylation sites. Al-Barakati HJ; McConnell EW; Hicks LM; Poole LB; Newman RH; Kc DB Sci Rep; 2018 Jul; 8(1):11288. PubMed ID: 30050050 [TBL] [Abstract][Full Text] [Related]
8. Computational identification of protein S-sulfenylation sites by incorporating the multiple sequence features information. Hasan MM; Guo D; Kurata H Mol Biosyst; 2017 Nov; 13(12):2545-2550. PubMed ID: 28990628 [TBL] [Abstract][Full Text] [Related]
9. PrUb-EL: A hybrid framework based on deep learning for identifying ubiquitination sites in Arabidopsis thaliana using ensemble learning strategy. Wang H; Li H; Gao W; Xie J Anal Biochem; 2022 Dec; 658():114935. PubMed ID: 36206844 [TBL] [Abstract][Full Text] [Related]
10. S-SulfPred: A sensitive predictor to capture S-sulfenylation sites based on a resampling one-sided selection undersampling-synthetic minority oversampling technique. Jia C; Zuo Y J Theor Biol; 2017 Jun; 422():84-89. PubMed ID: 28411111 [TBL] [Abstract][Full Text] [Related]
11. PredCSO: an ensemble method for the prediction of S-sulfenylation sites in proteins. Deng L; Xu X; Liu H Mol Omics; 2018 Aug; 14(4):257-265. PubMed ID: 29942948 [TBL] [Abstract][Full Text] [Related]
12. Using deep neural networks and biological subwords to detect protein S-sulfenylation sites. Do DT; Le TQT; Le NQK Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32613242 [TBL] [Abstract][Full Text] [Related]
13. MDD-SOH: exploiting maximal dependence decomposition to identify S-sulfenylation sites with substrate motifs. Bui VM; Lu CT; Ho TT; Lee TY Bioinformatics; 2016 Jan; 32(2):165-72. PubMed ID: 26411868 [TBL] [Abstract][Full Text] [Related]
14. Mining for protein S-sulfenylation in Huang J; Willems P; Wei B; Tian C; Ferreira RB; Bodra N; MartÃnez Gache SA; Wahni K; Liu K; Vertommen D; Gevaert K; Carroll KS; Van Montagu M; Yang J; Van Breusegem F; Messens J Proc Natl Acad Sci U S A; 2019 Oct; 116(42):21256-21261. PubMed ID: 31578252 [TBL] [Abstract][Full Text] [Related]
15. Terrorism group prediction using feature combination and BiGRU with self-attention mechanism. Abdalsalam M; Li C; Dahou A; Kryvinska N PeerJ Comput Sci; 2024; 10():e2252. PubMed ID: 39314736 [TBL] [Abstract][Full Text] [Related]
16. Protein-Protein Interaction Prediction Model Based on ProtBert-BiGRU-Attention. Gao Q; Zhang C; Li M; Yu T J Comput Biol; 2024 Sep; 31(9):797-814. PubMed ID: 39069885 [TBL] [Abstract][Full Text] [Related]
17. iSulf-Cys: Prediction of S-sulfenylation Sites in Proteins with Physicochemical Properties of Amino Acids. Xu Y; Ding J; Wu LY PLoS One; 2016; 11(4):e0154237. PubMed ID: 27104833 [TBL] [Abstract][Full Text] [Related]
18. Attention-assisted hybrid CNN-BILSTM-BiGRU model with SMOTE-Tomek method to detect cardiac arrhythmia based on 12 Chopannejad S; Roshanpoor A; Sadoughi F Digit Health; 2024; 10():20552076241234624. PubMed ID: 38449680 [TBL] [Abstract][Full Text] [Related]
19. SOHPRED: a new bioinformatics tool for the characterization and prediction of human S-sulfenylation sites. Wang X; Yan R; Li J; Song J Mol Biosyst; 2016 Aug; 12(9):2849-58. PubMed ID: 27364688 [TBL] [Abstract][Full Text] [Related]
20. PLP_FS: prediction of lysine phosphoglycerylation sites in protein using support vector machine and fusion of multiple F_Score feature selection. Sohrawordi M; Hossain MA; Hasan MAM Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35929355 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]