These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 37336196)

  • 1. Absorption characteristics and solar absorption capacity of Au core NR coated with various shell material.
    Xing L; Ha Y; Wang R; Li Z
    Nanotechnology; 2023 Jul; 34(38):. PubMed ID: 37336196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of morphological evolution and aggregation of plasmonic core-shell nanostructures on solar thermal conversion.
    Xing L; Wang R; Ha Y; Li Z
    Appl Opt; 2023 Jul; 62(19):5195-5201. PubMed ID: 37707223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupling Resonances of Surface Plasmon in Gold Nanorod/Copper Chalcogenide Core-Shell Nanostructures and Their Enhanced Photothermal Effect.
    Li Y; Pan G; Liu Q; Ma L; Xie Y; Zhou L; Hao Z; Wang Q
    Chemphyschem; 2018 Jun; ():. PubMed ID: 29863808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient near-IR hyperthermia and intense nonlinear optical imaging contrast on the gold nanorod-in-shell nanostructures.
    Hu KW; Liu TM; Chung KY; Huang KS; Hsieh CT; Sun CK; Yeh CS
    J Am Chem Soc; 2009 Oct; 131(40):14186-7. PubMed ID: 19772320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Localized surface plasmon resonance and surface enhanced Raman scattering responses of Au@Ag core-shell nanorods with different thickness of Ag shell.
    Ma Y; Zhou J; Zou W; Jia Z; Petti L; Mormile P
    J Nanosci Nanotechnol; 2014 Jun; 14(6):4245-50. PubMed ID: 24738378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced optical responses of Au@Pd core/shell nanobars.
    Zhang K; Xiang Y; Wu X; Feng L; He W; Liu J; Zhou W; Xie S
    Langmuir; 2009 Jan; 25(2):1162-8. PubMed ID: 19090666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of Plasmonic-Enhanced Solar Photothermal Effect of Au NR@PVDF Micro-/Nanofilms.
    Ding S; Zhang J; Liu C; Li N; Zhang S; Wang Z; Xi M
    ACS Omega; 2022 Jun; 7(24):20750-20760. PubMed ID: 35755366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmon enhancement effect in Au gold nanorods@Cu2O core-shell nanostructures and their use in probing defect states.
    Shi X; Ji Y; Hou S; Liu W; Zhang H; Wen T; Yan J; Song M; Hu Z; Wu X
    Langmuir; 2015 Feb; 31(4):1537-46. PubMed ID: 25564759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Well-controlled synthesis of Au@Pt nanostructures by gold-nanorod-seeded growth.
    Feng L; Wu X; Ren L; Xiang Y; He W; Zhang K; Zhou W; Xie S
    Chemistry; 2008; 14(31):9764-71. PubMed ID: 18773406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. pH-Responsive Au@Pd bimetallic core-shell nanorods for enhanced synergistic targeted photothermal-augmented nanocatalytic therapy in the second near-infrared window.
    Tang Z; Ali I; Hou Y; Akakuru OU; Zhang Q; Mushtaq A; Zhang H; Lu Y; Ma X; Ge J; Iqbal MZ; Kong X
    J Mater Chem B; 2022 Aug; 10(34):6532-6545. PubMed ID: 36000458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of Y123 dye-sensitized solar cell performance using plasmonic gold nanorods.
    Chandrasekhar PS; Parashar PK; Swami SK; Dutta V; Komarala VK
    Phys Chem Chem Phys; 2018 Apr; 20(14):9651-9658. PubMed ID: 29582021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A SERS Study of Charge Transfer Process in Au Nanorod-MBA@Cu
    Guo L; Mao Z; Jin S; Zhu L; Zhao J; Zhao B; Jung YM
    Nanomaterials (Basel); 2021 Mar; 11(4):. PubMed ID: 33805298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Significant Broadband Photocurrent Enhancement by Au-CZTS Core-Shell Nanostructured Photocathodes.
    Zhang X; Wu X; Centeno A; Ryan MP; Alford NM; Riley DJ; Xie F
    Sci Rep; 2016 Mar; 6():23364. PubMed ID: 26997140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gold nanorod/molybdenum sulfide core-shell nanostructures synthesized by a photo-induced reduction process.
    Tran TD; Le LT; Nguyen DH; Pham MT; Truong DQ; Pham HV; Nguyen MT; Tran PD
    Nanotechnology; 2020 Apr; 31(26):265602. PubMed ID: 32301441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of SiO2 shell thickness on power conversion efficiency in plasmonic polymer solar cells with Au nanorod@SiO2 core-shell structures.
    Zhang R; Zhou Y; Peng L; Li X; Chen S; Feng X; Guan Y; Huang W
    Sci Rep; 2016 Apr; 6():25036. PubMed ID: 27125309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Core-shell-shell nanorods for controlled release of silver that can serve as a nanoheater for photothermal treatment on bacteria.
    Hu B; Wang N; Han L; Chen ML; Wang JH
    Acta Biomater; 2015 Jan; 11():511-9. PubMed ID: 25219350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An unconventional outer-to-inner synthesis strategy for core (Au)-shell nanostructures with photo-electrochemical enhancement.
    Zhang Z; Baek M; Song H; Yong K
    Nanoscale; 2017 Apr; 9(16):5342-5351. PubMed ID: 28401236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TiO2 coated Au/Ag nanorods with enhanced photocatalytic activity under visible light irradiation.
    Zhou N; Polavarapu L; Gao N; Pan Y; Yuan P; Wang Q; Xu QH
    Nanoscale; 2013 May; 5(10):4236-41. PubMed ID: 23546548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interference of Steroidogenesis by Gold Nanorod Core/Silver Shell Nanostructures: Implications for Reproductive Toxicity of Silver Nanomaterials.
    Jiang X; Wang L; Ji Y; Tang J; Tian X; Cao M; Li J; Bi S; Wu X; Chen C; Yin JJ
    Small; 2017 Mar; 13(10):. PubMed ID: 28009471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and spectroscopic studies of composite gold nanorods with a double-shell structure composed of spacer and cyanine dye J-aggregate layers.
    Yoshida A; Uchida N; Kometani N
    Langmuir; 2009 Oct; 25(19):11802-7. PubMed ID: 19655781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.