These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 37336204)

  • 41. [Study on the preparation of polycaprolactone/type
    Shen S; Chen M; Gao S; Guo W; Wang Z; Li H; Li X; Zhang B; Xian H; Zhang X; Liu S; Hao L; Zhuo N; Guo Q
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2018 Sep; 32(9):1205-1210. PubMed ID: 30129332
    [TBL] [Abstract][Full Text] [Related]  

  • 42. 3D printed multi-scale scaffolds with ultrafine fibers for providing excellent biocompatibility.
    Gao Q; Xie C; Wang P; Xie M; Li H; Sun A; Fu J; He Y
    Mater Sci Eng C Mater Biol Appl; 2020 Feb; 107():110269. PubMed ID: 31761213
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Permeability and mechanical properties of gradient porous PDMS scaffolds fabricated by 3D-printed sacrificial templates designed with minimal surfaces.
    Montazerian H; Mohamed MGA; Montazeri MM; Kheiri S; Milani AS; Kim K; Hoorfar M
    Acta Biomater; 2019 Sep; 96():149-160. PubMed ID: 31252172
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dual-functional 3D-printed composite scaffold for inhibiting bacterial infection and promoting bone regeneration in infected bone defect models.
    Yang Y; Chu L; Yang S; Zhang H; Qin L; Guillaume O; Eglin D; Richards RG; Tang T
    Acta Biomater; 2018 Oct; 79():265-275. PubMed ID: 30125670
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Post-manufacture loading of filaments and 3D printed PLA scaffolds with prednisolone and dexamethasone for tissue regeneration applications.
    Farto-Vaamonde X; Auriemma G; Aquino RP; Concheiro A; Alvarez-Lorenzo C
    Eur J Pharm Biopharm; 2019 Aug; 141():100-110. PubMed ID: 31112767
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Additive manufacturing of PLA-Mg composite scaffolds for hard tissue engineering applications.
    Bakhshi R; Mohammadi-Zerankeshi M; Mehrabi-Dehdezi M; Alizadeh R; Labbaf S; Abachi P
    J Mech Behav Biomed Mater; 2023 Feb; 138():105655. PubMed ID: 36621086
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Beta-tricalcium phosphate enhanced mechanical and biological properties of 3D-printed polyhydroxyalkanoates scaffold for bone tissue engineering.
    Ye X; Zhang Y; Liu T; Chen Z; Chen W; Wu Z; Wang Y; Li J; Li C; Jiang T; Zhang Y; Wu H; Xu X
    Int J Biol Macromol; 2022 Jun; 209(Pt A):1553-1561. PubMed ID: 35439474
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Fabrication of poly (lactic-co-glycolic acid)/decellularized articular cartilage extracellular matrix scaffold by three-dimensional printing technology and investigating its physicochemical properties].
    Zhang B; Shen S; Xian H; Dai Y; Guo W; Li X; Zhang X; Wang Z; Li H; Peng L; Luo X; Liu S; Lu X; Guo Q
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2019 Aug; 33(8):1011-1018. PubMed ID: 31407562
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Assessment of the morphology and dimensional accuracy of 3D printed PLA and PLA/HAp scaffolds.
    Gendviliene I; Simoliunas E; Rekstyte S; Malinauskas M; Zaleckas L; Jegelevicius D; Bukelskiene V; Rutkunas V
    J Mech Behav Biomed Mater; 2020 Apr; 104():103616. PubMed ID: 31929097
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Surface modification of 3D-printed porous scaffolds via mussel-inspired polydopamine and effective immobilization of rhBMP-2 to promote osteogenic differentiation for bone tissue engineering.
    Lee SJ; Lee D; Yoon TR; Kim HK; Jo HH; Park JS; Lee JH; Kim WD; Kwon IK; Park SA
    Acta Biomater; 2016 Aug; 40():182-191. PubMed ID: 26868173
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Anti-infective efficacy, cytocompatibility and biocompatibility of a 3D-printed osteoconductive composite scaffold functionalized with quaternized chitosan.
    Yang Y; Yang S; Wang Y; Yu Z; Ao H; Zhang H; Qin L; Guillaume O; Eglin D; Richards RG; Tang T
    Acta Biomater; 2016 Dec; 46():112-128. PubMed ID: 27686039
    [TBL] [Abstract][Full Text] [Related]  

  • 52. 4D printing of self-folding and cell-encapsulating 3D microstructures as scaffolds for tissue-engineering applications.
    Cui C; Kim DO; Pack MY; Han B; Han L; Sun Y; Han LH
    Biofabrication; 2020 Aug; 12(4):045018. PubMed ID: 32650325
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Poly(dopamine) coating of 3D printed poly(lactic acid) scaffolds for bone tissue engineering.
    Kao CT; Lin CC; Chen YW; Yeh CH; Fang HY; Shie MY
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():165-73. PubMed ID: 26249577
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cryogenic 3D Printing of w/o Pickering Emulsions Containing Bifunctional Drugs for Producing Hierarchically Porous Bone Tissue Engineering Scaffolds with Antibacterial Capability.
    Ye X; He Z; Liu Y; Liu X; He R; Deng G; Peng Z; Liu J; Luo Z; He X; Wang X; Wu J; Huang X; Zhang J; Wang C
    Int J Mol Sci; 2022 Aug; 23(17):. PubMed ID: 36077120
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Indirect selective laser sintering-printed microporous biphasic calcium phosphate scaffold promotes endogenous bone regeneration via activation of ERK1/2 signaling.
    Zeng H; Pathak JL; Shi Y; Ran J; Liang L; Yan Q; Wu T; Fan Q; Li M; Bai Y
    Biofabrication; 2020 Mar; 12(2):025032. PubMed ID: 32084655
    [TBL] [Abstract][Full Text] [Related]  

  • 56. 3D Printing of Antibacterial, Biocompatible, and Biomimetic Hybrid Aerogel-Based Scaffolds with Hierarchical Porosities via Integrating Antibacterial Peptide-Modified Silk Fibroin with Silica Nanostructure.
    Karamat-Ullah N; Demidov Y; Schramm M; Grumme D; Auer J; Bohr C; Brachvogel B; Maleki H
    ACS Biomater Sci Eng; 2021 Sep; 7(9):4545-4556. PubMed ID: 34415718
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Electrohydrodynamic jet 3D printing of PCL/PVP composite scaffold for cell culture.
    Li K; Wang D; Zhao K; Song K; Liang J
    Talanta; 2020 May; 211():120750. PubMed ID: 32070610
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The potential impact of polyethylenimine on biological behavior of 3D-printed alginate scaffolds.
    Khoshnood N; Zamanian A; Abbasi M
    Int J Biol Macromol; 2021 May; 178():19-28. PubMed ID: 33636258
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synergistic effect of CaCO
    Zarei M; Hosseini Nikoo MM; Alizadeh R; Askarinya A
    J Mech Behav Biomed Mater; 2024 Jan; 149():106239. PubMed ID: 37984285
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Three-Dimensional Printing Biologically Inspired DNA-Based Gradient Scaffolds for Cartilage Tissue Regeneration.
    Zhou X; Tenaglio S; Esworthy T; Hann SY; Cui H; Webster TJ; Fenniri H; Zhang LG
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):33219-33228. PubMed ID: 32603082
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.