These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 37336472)
1. Effects of Transfixation Pin Positioning on the Biomechanical Properties of Acrylic External Skeletal Fixators in a Fracture Gap Model. Lahiani J; Freire M; Montasell X; Juette T; Gagnon D Vet Comp Orthop Traumatol; 2023 Nov; 36(6):273-278. PubMed ID: 37336472 [TBL] [Abstract][Full Text] [Related]
2. Effects of the number and the position of transfixation pins in acrylic connecting bars. Leriquier C; Audet-Robin F; Beauchamp G; Montasell X Can J Vet Res; 2022 Jan; 86(1):35-39. PubMed ID: 34975220 [TBL] [Abstract][Full Text] [Related]
3. The effect of transfixation pins on the biomechanical properties of angled acrylic connecting bars. Montasell X; Herndon G; Szwec D; Beauchamp G Can J Vet Res; 2019 Jan; 83(1):17-23. PubMed ID: 30670898 [TBL] [Abstract][Full Text] [Related]
4. Mechanical evaluation of various external skeletal fixator-intramedullary pin tie-in configurations using a tubular plastic bone model. Van Wettere AJ; Wallace LJ; Redig PT; Bourgeault CA; Bechtold JE J Avian Med Surg; 2009 Dec; 23(4):263-76. PubMed ID: 20235457 [TBL] [Abstract][Full Text] [Related]
5. Mechanical evaluation of external skeletal fixator-intramedullary pin tie-in configurations applied to cadaveral humeri from red-tailed hawks (Buteo jamaicensis). Van Wettere AJ; Redig PT; Wallace LJ; Bourgeault CA; Bechtold JE J Avian Med Surg; 2009 Dec; 23(4):277-85. PubMed ID: 20235458 [TBL] [Abstract][Full Text] [Related]
6. Comparison of torsional properties between a Fixateur Externe du Service de Santé des Armées and an acrylic tie-in external skeletal fixator in a red-tailed hawk ( Hersh-Boyle RA; Kapatkin AS; Garcia TC; Robinson DA; Sanchez-Migallon Guzman D; Kerrigan SM; Chou PY; Stover SM Am J Vet Res; 2020 Jul; 81(7):557-564. PubMed ID: 32584184 [TBL] [Abstract][Full Text] [Related]
7. Ex Vivo Biomechanical Comparison of Titanium Locking Plate, Stainless Steel Nonlocking Plate, and Tie-in External Fixator Applied by a Dorsal Approach on Ostectomized Humeri of Pigeons ( Darrow BG; Weigel JP; Greenacre CB; Xie X; Liaw PK; Biskup JJ J Avian Med Surg; 2019 Mar; 33(1):29-37. PubMed ID: 31124609 [TBL] [Abstract][Full Text] [Related]
8. Mechanical testing of a steel-reinforced epoxy resin bar and clamp for external skeletal fixation of long-bone fractures in cats. Leitch BJ; Worth AJ N Z Vet J; 2018 May; 66(3):144-153. PubMed ID: 29466683 [TBL] [Abstract][Full Text] [Related]
9. What Are the Biomechanical Effects of Half-pin and Fine-wire Configurations on Fracture Site Movement in Circular Frames? Henderson DJ; Rushbrook JL; Stewart TD; Harwood PJ Clin Orthop Relat Res; 2016 Apr; 474(4):1041-9. PubMed ID: 26642789 [TBL] [Abstract][Full Text] [Related]
10. Stiffness of modified Type 1a linear external skeletal fixators. Reaugh HF; Rochat MC; Bruce CW; Galloway DS; Payton ME Vet Comp Orthop Traumatol; 2007; 20(4):264-8. PubMed ID: 18038001 [TBL] [Abstract][Full Text] [Related]
11. An in vitro biomechanical study of a multiplanar circular external fixator applied to equine third metacarpal bones. Cervantes C; Madison JB; Miller GJ; Casar RS Vet Surg; 1996; 25(1):1-5. PubMed ID: 8719080 [TBL] [Abstract][Full Text] [Related]
12. What Are the Biomechanical Properties of the Taylor Spatial Frame™? Henderson DJ; Rushbrook JL; Harwood PJ; Stewart TD Clin Orthop Relat Res; 2017 May; 475(5):1472-1482. PubMed ID: 27896679 [TBL] [Abstract][Full Text] [Related]
13. Stiffness of a type II external skeletal fixator and locking compression plate in a fracture gap model. Muro NM; Gilley RS; Kemper AR; Benitez ME; Barry SL; McNally C Vet Surg; 2021 Apr; 50(3):622-632. PubMed ID: 33404123 [TBL] [Abstract][Full Text] [Related]
14. In vitro biomechanical testing of different configurations of acrylic external skeletal fixator constructs. Tyagi SK; Aithal HP; Kinjavdekar P; Amarpal ; Pawde AM; Srivastava T; Singh J; Madhu DN Vet Comp Orthop Traumatol; 2015; 28(4):227-33. PubMed ID: 25998130 [TBL] [Abstract][Full Text] [Related]
15. Management of fractures of the long bones of eight cats using external skeletal fixation and a tied-in intra-medullary pin with a resin-acrylic bar. Worth AJ N Z Vet J; 2007 Aug; 55(4):191-7. PubMed ID: 17676085 [TBL] [Abstract][Full Text] [Related]
16. Mechanics of Supplemental Drop Wire and Half-Pin Fixation Elements in Single Ring Circular External Fixator Constructs. Lewis RA; Lewis DD; Anderson CL; Hudson CC; Coggeshall JD; Iorgulescu AD; Banks SA Vet Surg; 2016 May; 45(4):471-9. PubMed ID: 27009685 [TBL] [Abstract][Full Text] [Related]
17. Biomechanical evaluation of acrylic external skeletal fixation in dogs and cats. Okrasinski EB; Pardo AD; Graehler RA J Am Vet Med Assoc; 1991 Dec; 199(11):1590-3. PubMed ID: 1778742 [TBL] [Abstract][Full Text] [Related]
18. Relative stiffness and stress of type I and type II external fixators: acrylic versus stainless-steel connecting bars--a theoretical approach. Shahar R Vet Surg; 2000; 29(1):59-69. PubMed ID: 10653496 [TBL] [Abstract][Full Text] [Related]
19. Comparative biomechanical evaluation of a pin-sleeve transfixation system in cadaveric calf metacarpal bones. Brianza S; Vogel S; Rothstock S; Thalhauser M; Desrochers A; Boure L Vet Surg; 2013 Jan; 42(1):67-74. PubMed ID: 23215700 [TBL] [Abstract][Full Text] [Related]
20. Comparative evaluation of in vitro mechanical properties of different designs of epoxy-pin external skeletal fixation systems. Tyagi SK; Aithal HP; Kinjavdekar P; Amarpal ; Pawde AM; Srivastava T; Tyagi KP; Monsang SW Vet Surg; 2014 Mar; 43(3):355-60. PubMed ID: 24410773 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]