These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37336603)

  • 41. Effects of Seasonal Variation on Spatial and Temporal Distributions of Ozone in Northeast China.
    Chen J; Sun L; Jia H; Li C; Ai X; Zang S
    Int J Environ Res Public Health; 2022 Nov; 19(23):. PubMed ID: 36497936
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Surface ozone pollution in China: Trends, exposure risks, and drivers.
    He C; Wu Q; Li B; Liu J; Gong X; Zhang L
    Front Public Health; 2023; 11():1131753. PubMed ID: 37026118
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Spatiotemporal Variation in Ground Level Ozone and Its Driving Factors: A Comparative Study of Coastal and Inland Cities in Eastern China.
    Zhou M; Li Y; Zhang F
    Int J Environ Res Public Health; 2022 Aug; 19(15):. PubMed ID: 35955043
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparison of spatiotemporal prediction models of daily exposure of individuals to ambient nitrogen dioxide and ozone in Montreal, Canada.
    Buteau S; Hatzopoulou M; Crouse DL; Smargiassi A; Burnett RT; Logan T; Cavellin LD; Goldberg MS
    Environ Res; 2017 Jul; 156():201-230. PubMed ID: 28359040
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Analysis of Characteristics and Meteorological Influence Factors of Ozone Pollution in Henan Province].
    Qi YJ; Yu SJ; Yang J; Yin SS; Cheng JH; Zhang RQ
    Huan Jing Ke Xue; 2020 Feb; 41(2):587-599. PubMed ID: 32608717
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Rural vehicle emission as an important driver for the variations of summertime tropospheric ozone in the Beijing-Tianjin-Hebei region during 2014-2019.
    Song Y; Zhang Y; Liu J; Zhang C; Liu C; Liu P; Mu Y
    J Environ Sci (China); 2022 Apr; 114():126-135. PubMed ID: 35459478
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comparison of Machine Learning and Land Use Regression for fine scale spatiotemporal estimation of ambient air pollution: Modeling ozone concentrations across the contiguous United States.
    Ren X; Mi Z; Georgopoulos PG
    Environ Int; 2020 Sep; 142():105827. PubMed ID: 32593834
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ozone pollution in Chinese cities: Assessment of seasonal variation, health effects and economic burden.
    Maji KJ; Ye WF; Arora M; Nagendra SMS
    Environ Pollut; 2019 Apr; 247():792-801. PubMed ID: 30721870
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Estimation of surface-level NO
    Kang Y; Choi H; Im J; Park S; Shin M; Song CK; Kim S
    Environ Pollut; 2021 Nov; 288():117711. PubMed ID: 34329053
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Machine learning models accurately predict ozone exposure during wildfire events.
    Watson GL; Telesca D; Reid CE; Pfister GG; Jerrett M
    Environ Pollut; 2019 Nov; 254(Pt A):112792. PubMed ID: 31421571
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Spatiotemporal variations of air pollutants and ozone prediction using machine learning algorithms in the Beijing-Tianjin-Hebei region from 2014 to 2021.
    Lyu Y; Ju Q; Lv F; Feng J; Pang X; Li X
    Environ Pollut; 2022 Aug; 306():119420. PubMed ID: 35526642
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Temporal and Spatial Variations in Ozone and Its Causes over Hainan Province from 2015 to 2020].
    Fu CB; Xu WS; Dan L; Tong JH
    Huan Jing Ke Xue; 2022 Feb; 43(2):675-685. PubMed ID: 35075841
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Relationships between chemical elements of PM
    Zeng J; Zhang L; Yao C; Xie T; Rao L; Lu H; Liu X; Wang Q; Lu S
    J Environ Sci (China); 2020 Sep; 95():49-57. PubMed ID: 32653192
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ozone response modeling to NOx and VOC emissions: Examining machine learning models.
    Kuo CP; Fu JS
    Environ Int; 2023 Jun; 176():107969. PubMed ID: 37201398
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Study on Transmission Channel and Pollution Sources Region of O
    Li C; Boru M; Li Y; Peng J; Huang Q
    J Environ Public Health; 2022; 2022():1837492. PubMed ID: 36159759
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Drivers of Increasing Ozone during the Two Phases of Clean Air Actions in China 2013-2020.
    Liu Y; Geng G; Cheng J; Liu Y; Xiao Q; Liu L; Shi Q; Tong D; He K; Zhang Q
    Environ Sci Technol; 2023 Jun; 57(24):8954-8964. PubMed ID: 37276527
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Predicting ozone formation in petrochemical industrialized Lanzhou city by interpretable ensemble machine learning.
    Wang L; Zhao Y; Shi J; Ma J; Liu X; Han D; Gao H; Huang T
    Environ Pollut; 2023 Feb; 318():120798. PubMed ID: 36464118
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Air quality prediction using CNN+LSTM-based hybrid deep learning architecture.
    Gilik A; Ogrenci AS; Ozmen A
    Environ Sci Pollut Res Int; 2022 Feb; 29(8):11920-11938. PubMed ID: 34554404
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Long-term trend in surface ozone in Houston-Galveston-Brazoria: Sectoral contributions based on changes in volatile organic compounds.
    Soleimanian E; Wang Y; Estes M
    Environ Pollut; 2022 Sep; 308():119647. PubMed ID: 35718047
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A cold front induced co-occurrence of O
    He Y; Li L; Wang H; Xu X; Li Y; Fan S
    Environ Pollut; 2022 Aug; 306():119464. PubMed ID: 35569620
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.