BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 37336949)

  • 21. iHi-C 2.0: A simple approach for mapping native spatial chromatin organisation from low cell numbers.
    Mizi A; Gade Gusmao E; Papantonis A
    Methods; 2020 Jan; 170():33-37. PubMed ID: 31283985
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Integrating epigenomic data and 3D genomic structure with a new measure of chromatin assortativity.
    Pancaldi V; Carrillo-de-Santa-Pau E; Javierre BM; Juan D; Fraser P; Spivakov M; Valencia A; Rico D
    Genome Biol; 2016 Jul; 17(1):152. PubMed ID: 27391817
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Extracting multi-way chromatin contacts from Hi-C data.
    Liu L; Zhang B; Hyeon C
    PLoS Comput Biol; 2021 Dec; 17(12):e1009669. PubMed ID: 34871311
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Using DNase Hi-C techniques to map global and local three-dimensional genome architecture at high resolution.
    Ma W; Ay F; Lee C; Gulsoy G; Deng X; Cook S; Hesson J; Cavanaugh C; Ware CB; Krumm A; Shendure J; Blau CA; Disteche CM; Noble WS; Duan Z
    Methods; 2018 Jun; 142():59-73. PubMed ID: 29382556
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hi-C Analysis to Identify Genome-Wide Chromatin Structural Aberration in Cancer.
    Okabe A; Kaneda A
    Methods Mol Biol; 2023; 2519():127-140. PubMed ID: 36066718
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bioinformatics Pipelines for Identification of Super-Enhancers and 3D Chromatin Contacts.
    Sakashita A; Takeuchi C; Maezawa S; Namekawa SH
    Methods Mol Biol; 2023; 2577():123-146. PubMed ID: 36173570
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessment of 3D Interactions Between Promoters and Distal Regulatory Elements with Promoter Capture Hi-C (PCHi-C).
    Karasu N; Sexton T
    Methods Mol Biol; 2021; 2351():229-248. PubMed ID: 34382193
    [TBL] [Abstract][Full Text] [Related]  

  • 28. ASHIC: hierarchical Bayesian modeling of diploid chromatin contacts and structures.
    Ye T; Ma W
    Nucleic Acids Res; 2020 Dec; 48(21):e123. PubMed ID: 33074315
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Understanding 3D genome organization by multidisciplinary methods.
    Jerkovic I; Cavalli G
    Nat Rev Mol Cell Biol; 2021 Aug; 22(8):511-528. PubMed ID: 33953379
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The DLO Hi-C Tool for Digestion-Ligation-Only Hi-C Chromosome Conformation Capture Data Analysis.
    Hong P; Jiang H; Xu W; Lin D; Xu Q; Cao G; Li G
    Genes (Basel); 2020 Mar; 11(3):. PubMed ID: 32164155
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Practical Analysis of Hi-C Data: Generating A/B Compartment Profiles.
    Miura H; Poonperm R; Takahashi S; Hiratani I
    Methods Mol Biol; 2018; 1861():221-245. PubMed ID: 30218370
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biased visibility in Hi-C datasets marks dynamically regulated condensed and decondensed chromatin states genome-wide.
    Chandradoss KR; Guthikonda PK; Kethavath S; Dass M; Singh H; Nayak R; Kurukuti S; Sandhu KS
    BMC Genomics; 2020 Feb; 21(1):175. PubMed ID: 32087673
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of computational methods for Hi-C data analysis.
    Forcato M; Nicoletti C; Pal K; Livi CM; Ferrari F; Bicciato S
    Nat Methods; 2017 Jul; 14(7):679-685. PubMed ID: 28604721
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Advantages of using graph databases to explore chromatin conformation capture experiments.
    D'Agostino D; LiĆ² P; Aldinucci M; Merelli I
    BMC Bioinformatics; 2021 Apr; 22(Suppl 2):43. PubMed ID: 33902433
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hi-C 3.0: Improved Protocol for Genome-Wide Chromosome Conformation Capture.
    Lafontaine DL; Yang L; Dekker J; Gibcus JH
    Curr Protoc; 2021 Jul; 1(7):e198. PubMed ID: 34286910
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Single-cell Hi-C data analysis: safety in numbers.
    Galitsyna AA; Gelfand MS
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34406348
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Methods for the Analysis of Topologically Associating Domains (TADs).
    Zufferey M; Tavernari D; Ciriello G
    Methods Mol Biol; 2022; 2301():39-59. PubMed ID: 34415530
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reconstructing spatial organizations of chromosomes through manifold learning.
    Zhu G; Deng W; Hu H; Ma R; Zhang S; Yang J; Peng J; Kaplan T; Zeng J
    Nucleic Acids Res; 2018 May; 46(8):e50. PubMed ID: 29408992
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improved accuracy assessment for 3D genome reconstructions.
    Segal MR; Bengtsson HL
    BMC Bioinformatics; 2018 May; 19(1):196. PubMed ID: 29848293
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Selfish: discovery of differential chromatin interactions via a self-similarity measure.
    Ardakany AR; Ay F; Lonardi S
    Bioinformatics; 2019 Jul; 35(14):i145-i153. PubMed ID: 31510653
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.