BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 37337105)

  • 1. Transcriptomic classes of BCR-ABL1 lymphoblastic leukemia.
    Kim JC; Chan-Seng-Yue M; Ge S; Zeng AGX; Ng K; Gan OI; Garcia-Prat L; Flores-Figueroa E; Woo T; Zhang AXW; Arruda A; Chithambaram S; Dobson SM; Khoo A; Khan S; Ibrahimova N; George A; Tierens A; Hitzler J; Kislinger T; Dick JE; McPherson JD; Minden MD; Notta F
    Nat Genet; 2023 Jul; 55(7):1186-1197. PubMed ID: 37337105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BCR-ABL1-like acute lymphoblastic leukaemia: From bench to bedside.
    Boer JM; den Boer ML
    Eur J Cancer; 2017 Sep; 82():203-218. PubMed ID: 28709134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RAG enhances BCR-ABL1-positive leukemic cell growth through its endonuclease activity in vitro and in vivo.
    Yuan M; Wang Y; Qin M; Zhao X; Chen X; Li D; Miao Y; Otieno Odhiambo W; Liu H; Ma Y; Ji Y
    Cancer Sci; 2021 Jul; 112(7):2679-2691. PubMed ID: 33949040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crizotinib acts as ABL1 inhibitor combining ATP-binding with allosteric inhibition and is active against native BCR-ABL1 and its resistance and compound mutants BCR-ABL1
    Mian AA; Haberbosch I; Khamaisie H; Agbarya A; Pietsch L; Eshel E; Najib D; Chiriches C; Ottmann OG; Hantschel O; Biondi RM; Ruthardt M; Mahajna J
    Ann Hematol; 2021 Aug; 100(8):2023-2029. PubMed ID: 34110462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beneficial tyrosine kinase inhibitor therapy in a patient with relapsed BCR-ABL1-like acute lymphoblastic leukemia with CCDC88C-PDGFRB fusion.
    Oya S; Morishige S; Ozawa H; Sasaki K; Semba Y; Yamasaki Y; Nakamura T; Aoyama K; Seki R; Mouri F; Osaki K; Miyamoto T; Maeda T; Nagafuji K
    Int J Hematol; 2021 Feb; 113(2):285-289. PubMed ID: 32951102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BCR-ABL1 induces aberrant splicing of IKAROS and lineage infidelity in pre-B lymphoblastic leukemia cells.
    Klein F; Feldhahn N; Herzog S; Sprangers M; Mooster JL; Jumaa H; Müschen M
    Oncogene; 2006 Feb; 25(7):1118-24. PubMed ID: 16205638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Mutations in the BCR-ABL1 gene in a peruvian patient with acute lymphoblastic leukemia resistant to therapy].
    Ortiz CA; Alvarez YP; Dongo-Pflucker KL; Valdivia E; Mendoza Fernández J; Dávila S; Mora-Alférez P
    Rev Fac Cien Med Univ Nac Cordoba; 2017; 74(2):162-166. PubMed ID: 28657534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The clonal evolution of two distinct T315I-positive BCR-ABL1 subclones in a Philadelphia-positive acute lymphoblastic leukemia failing multiple lines of therapy: a case report.
    De Benedittis C; Papayannidis C; Venturi C; Abbenante MC; Paolini S; Parisi S; Sartor C; Cavo M; Martinelli G; Soverini S
    BMC Cancer; 2017 Aug; 17(1):523. PubMed ID: 28779753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RUNX1 transactivates BCR-ABL1 expression in Philadelphia chromosome positive acute lymphoblastic leukemia.
    Masuda T; Maeda S; Shimada S; Sakuramoto N; Morita K; Koyama A; Suzuki K; Mitsuda Y; Matsuo H; Kubota H; Kato I; Tanaka K; Takita J; Hirata M; Kataoka TR; Nakahata T; Adachi S; Hirai H; Mizuta S; Naka K; Imai Y; Kimura S; Sugiyama H; Kamikubo Y
    Cancer Sci; 2022 Feb; 113(2):529-539. PubMed ID: 34902205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differentiation status of primary chronic myeloid leukemia cells affects sensitivity to BCR-ABL1 inhibitors.
    Pietarinen PO; Eide CA; Ayuda-Durán P; Potdar S; Kuusanmäki H; Andersson EI; Mpindi JP; Pemovska T; Kontro M; Heckman CA; Kallioniemi O; Wennerberg K; Hjorth-Hansen H; Druker BJ; Enserink JM; Tyner JW; Mustjoki S; Porkka K
    Oncotarget; 2017 Apr; 8(14):22606-22615. PubMed ID: 28186983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined inhibition of BCR-ABL1 and the proteasome as a potential novel therapeutic approach in BCR-ABL positive acute lymphoblastic leukemia.
    Maletzke S; Salimi A; Vieri M; Schroeder KM; Schemionek M; Masouleh BK; Brümmendorf TH; Koschmieder S; Appelmann I
    PLoS One; 2022; 17(10):e0268352. PubMed ID: 36194587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Outcomes of children with BCR-ABL1–like acute lymphoblastic leukemia treated with risk-directed therapy based on the levels of minimal residual disease.
    Roberts KG; Pei D; Campana D; Payne-Turner D; Li Y; Cheng C; Sandlund JT; Jeha S; Easton J; Becksfort J; Zhang J; Coustan-Smith E; Raimondi SC; Leung WH; Relling MV; Evans WE; Downing JR; Mullighan CG; Pui CH
    J Clin Oncol; 2014 Sep; 32(27):3012-20. PubMed ID: 25049327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasma tyrosine kinase activity as a potential biomarker in BCR-ABL1-targeted therapy.
    Yeh CH; Abdool A; Bruey JM
    Cancer Biomark; 2010; 7(6):295-303. PubMed ID: 21694468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fusion of EML1 to ABL1 in T-cell acute lymphoblastic leukemia with cryptic t(9;14)(q34;q32).
    De Keersmaecker K; Graux C; Odero MD; Mentens N; Somers R; Maertens J; Wlodarska I; Vandenberghe P; Hagemeijer A; Marynen P; Cools J
    Blood; 2005 Jun; 105(12):4849-52. PubMed ID: 15713800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Next-generation sequencing for BCR-ABL1 kinase domain mutations in adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia: A position paper.
    Soverini S; Albano F; Bassan R; Fabbiano F; Ferrara F; Foà R; Olivieri A; Rambaldi A; Rossi G; Sica S; Specchia G; Venditti A; Barosi G; Pane F
    Cancer Med; 2020 May; 9(9):2960-2970. PubMed ID: 32154668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SFPQ-ABL1 and BCR-ABL1 use different signaling networks to drive B-cell acute lymphoblastic leukemia.
    Brown LM; Hediyeh-Zadeh S; Sadras T; Huckstep H; Sandow JJ; Bartolo RC; Kosasih HJ; Davidson NM; Schmidt B; Bjelosevic S; Johnstone R; Webb AI; Khaw SL; Oshlack A; Davis MJ; Ekert PG
    Blood Adv; 2022 Apr; 6(7):2373-2387. PubMed ID: 35061886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discontinuation of Maintenance Tyrosine Kinase Inhibitors in Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia outside of Transplant.
    Samra B; Kantarjian HM; Sasaki K; Alotaibi AS; Konopleva M; O'Brien S; Ferrajoli A; Garris R; Nunez CA; Kadia TM; Short NJ; Jabbour E
    Acta Haematol; 2021; 144(3):285-292. PubMed ID: 33238261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SHP2 is required for BCR-ABL1-induced hematologic neoplasia.
    Gu S; Sayad A; Chan G; Yang W; Lu Z; Virtanen C; Van Etten RA; Neel BG
    Leukemia; 2018 Jan; 32(1):203-213. PubMed ID: 28804122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo RNAi screening identifies
    Fiedler ERC; Bhutkar A; Lawler E; Besada R; Hemann MT
    Blood Adv; 2018 Jun; 2(11):1229-1242. PubMed ID: 29853524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of a high sensitive nanofluidic array for the detection of rare copies of BCR-ABL1 transcript in patients with Philadelphia-positive acute lymphoblastic leukemia in complete response.
    Iacobucci I; Lonetti A; Venturi C; Ferrari A; Papayannidis C; Ottaviani E; Abbenante MC; Paolini S; Bresciani P; Potenza L; Parisi S; Cattina F; Soverini S; Russo D; Luppi M; Martinelli G
    Leuk Res; 2014 May; 38(5):581-5. PubMed ID: 24630366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.