These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 37337618)

  • 1. Dynamic Control of Functional Coacervates in Synthetic Cells.
    Nair KS; Radhakrishnan S; Bajaj H
    ACS Synth Biol; 2023 Jul; 12(7):2168-2177. PubMed ID: 37337618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatiotemporal control of coacervate formation within liposomes.
    Deshpande S; Brandenburg F; Lau A; Last MGF; Spoelstra WK; Reese L; Wunnava S; Dogterom M; Dekker C
    Nat Commun; 2019 Apr; 10(1):1800. PubMed ID: 30996302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatiotemporal Propagation of a Minimal Catalytic RNA Network in GUV Protocells by Temperature Cycling and Phase Separation.
    Peter B; Levrier A; Schwille P
    Angew Chem Int Ed Engl; 2023 Apr; 62(17):e202218507. PubMed ID: 36757674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Live Follow-Up of Enzymatic Reactions Inside the Cavities of Synthetic Giant Unilamellar Vesicles Equipped with Membrane Proteins Mimicking Cell Architecture.
    Garni M; Einfalt T; Goers R; Palivan CG; Meier W
    ACS Synth Biol; 2018 Sep; 7(9):2116-2125. PubMed ID: 30145889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Programmable and Chemically Fueled DNA Coacervates by Transient Liquid-Liquid Phase Separation.
    Deng J; Walther A
    Chem; 2020 Dec; 6(12):3329-3343. PubMed ID: 35252623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous Transformation from Membrane-Less Coacervates to Membranized Coacervates and Giant Vesicles: Toward Multicompartmental Protocells with Complex (Membrane) Architectures.
    Zhou Y; Zhang K; Moreno S; Temme A; Voit B; Appelhans D
    Angew Chem Int Ed Engl; 2024 Aug; 63(34):e202407472. PubMed ID: 38847278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNA-Based Coacervates as a Model for Membraneless Organelles: Formation, Properties, and Interfacial Liposome Assembly.
    Aumiller WM; Pir Cakmak F; Davis BW; Keating CD
    Langmuir; 2016 Oct; 32(39):10042-10053. PubMed ID: 27599198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spontaneous Transition of Spherical Coacervate to Vesicle-Like Compartment.
    Choi H; Hong Y; Najafi S; Kim SY; Shea JE; Hwang DS; Choi YS
    Adv Sci (Weinh); 2024 Feb; 11(7):e2305978. PubMed ID: 38063842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coacervate Droplets for Synthetic Cells.
    Lin Z; Beneyton T; Baret JC; Martin N
    Small Methods; 2023 Dec; 7(12):e2300496. PubMed ID: 37462244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Microfluidic Platform for Sequential Assembly and Separation of Synthetic Cell Models.
    Tivony R; Fletcher M; Al Nahas K; Keyser UF
    ACS Synth Biol; 2021 Nov; 10(11):3105-3116. PubMed ID: 34761904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic control of shape deformations and membrane phase separation inside giant vesicles.
    Su WC; Ho JCS; Gettel DL; Rowland AT; Keating CD; Parikh AN
    Nat Chem; 2024 Jan; 16(1):54-62. PubMed ID: 37414881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How Droplets Can Accelerate Reactions─Coacervate Protocells as Catalytic Microcompartments.
    Smokers IBA; Visser BS; Slootbeek AD; Huck WTS; Spruijt E
    Acc Chem Res; 2024 Jul; 57(14):1885-1895. PubMed ID: 38968602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complex Coacervate Materials as Artificial Cells.
    Cook AB; Novosedlik S; van Hest JCM
    Acc Mater Res; 2023 Mar; 4(3):287-298. PubMed ID: 37009061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic Formation of Monodisperse Coacervate Organelles in Liposomes.
    Deng NN; Huck WTS
    Angew Chem Int Ed Engl; 2017 Aug; 56(33):9736-9740. PubMed ID: 28658517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interfacing Coacervates with Membranes: From Artificial Organelles and Hybrid Protocells to Intracellular Delivery.
    Lu T; Javed S; Bonfio C; Spruijt E
    Small Methods; 2023 Dec; 7(12):e2300294. PubMed ID: 37354057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pH-Controlled Coacervate-Membrane Interactions within Liposomes.
    Last MGF; Deshpande S; Dekker C
    ACS Nano; 2020 Apr; 14(4):4487-4498. PubMed ID: 32239914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Secondary Ion Mass Spectrometry of Single Giant Unilamellar Vesicles Reveals Compositional Variability.
    Grusky DS; Bhattacharya A; Boxer SG
    J Am Chem Soc; 2023 Dec; 145(50):27521-27530. PubMed ID: 38056605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complex coacervates as artificial membraneless organelles and protocells.
    Deng NN
    Biomicrofluidics; 2020 Sep; 14(5):051301. PubMed ID: 32922586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polymeric Microreactors with pH-Controlled Spatial Localization of Cascade Reactions.
    Ivanov T; Cao S; Bohra N; de Souza Melchiors M; Caire da Silva L; Landfester K
    ACS Appl Mater Interfaces; 2023 Oct; 15(44):50755-64. PubMed ID: 37903081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomolecular Chemistry in Liquid Phase Separated Compartments.
    Nakashima KK; Vibhute MA; Spruijt E
    Front Mol Biosci; 2019; 6():21. PubMed ID: 31001538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.