These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 37337618)

  • 21. Measuring the activity and structure of functional RNAs inside compartments formed by liquid-liquid phase separation.
    Poudyal RR; Meyer MO; Bevilacqua PC
    Methods Enzymol; 2021; 646():307-327. PubMed ID: 33453930
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photoswitchable Molecular Communication between Programmable DNA-Based Artificial Membraneless Organelles.
    Zhao QH; Cao FH; Luo ZH; Huck WTS; Deng NN
    Angew Chem Int Ed Engl; 2022 Mar; 61(14):e202117500. PubMed ID: 35090078
    [TBL] [Abstract][Full Text] [Related]  

  • 23. pH-Triggered Assembly of Endomembrane Multicompartments in Synthetic Cells.
    Lussier F; Schröter M; Diercks NJ; Jahnke K; Weber C; Frey C; Platzman I; Spatz JP
    ACS Synth Biol; 2022 Jan; 11(1):366-382. PubMed ID: 34889607
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Advances in giant unilamellar vesicle preparation techniques and applications.
    Nair KS; Bajaj H
    Adv Colloid Interface Sci; 2023 Aug; 318():102935. PubMed ID: 37320960
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Self-programmed enzyme phase separation and multiphase coacervate droplet organization.
    Karoui H; Seck MJ; Martin N
    Chem Sci; 2021 Jan; 12(8):2794-2802. PubMed ID: 34164043
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Artificial cell synthesis using biocatalytic polymerization-induced self-assembly.
    Belluati A; Jimaja S; Chadwick RJ; Glynn C; Chami M; Happel D; Guo C; Kolmar H; Bruns N
    Nat Chem; 2024 Apr; 16(4):564-574. PubMed ID: 38049652
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bottom-Up Assembly of Synthetic Cells with a DNA Cytoskeleton.
    Jahnke K; Huth V; Mersdorf U; Liu N; Göpfrich K
    ACS Nano; 2022 May; 16(5):7233-7241. PubMed ID: 35377150
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Current Perspectives on Synthetic Compartments for Biomedical Applications.
    Heuberger L; Korpidou M; Eggenberger OM; Kyropoulou M; Palivan CG
    Int J Mol Sci; 2022 May; 23(10):. PubMed ID: 35628527
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biocatalytic self-assembled synthetic vesicles and coacervates: From single compartment to artificial cells.
    Gaur D; Dubey NC; Tripathi BP
    Adv Colloid Interface Sci; 2022 Jan; 299():102566. PubMed ID: 34864354
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Supramolecular fibrillation in coacervates and other confined systems towards biomimetic function.
    Sanchez-Fernandez A; Insua I; Montenegro J
    Commun Chem; 2024 Sep; 7(1):223. PubMed ID: 39349583
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Observations of Membrane Domain Reorganization in Mechanically Compressed Artificial Cells.
    Robinson T; Dittrich PS
    Chembiochem; 2019 Oct; 20(20):2666-2673. PubMed ID: 31087814
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Peptide-Based Coacervate-Core Vesicles with Semipermeable Membranes.
    Abbas M; Law JO; Grellscheid SN; Huck WTS; Spruijt E
    Adv Mater; 2022 Aug; 34(34):e2202913. PubMed ID: 35796384
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reversible photocontrol of DNA coacervation.
    Lafon S; Martin N
    Methods Enzymol; 2021; 646():329-351. PubMed ID: 33453931
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Not Available].
    Jia L; Gao S; Qiao Y
    Small Methods; 2024 Oct; 8(10):e2301724. PubMed ID: 38530063
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Light-Triggered Cargo Loading and Division of DNA-Containing Giant Unilamellar Lipid Vesicles.
    Dreher Y; Jahnke K; Schröter M; Göpfrich K
    Nano Lett; 2021 Jul; 21(14):5952-5957. PubMed ID: 34251204
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Production of giant unilamellar vesicles by the water-in-oil emulsion-transfer method without high internal concentrations of sugars.
    Tsuji G; Sunami T; Ichihashi N
    J Biosci Bioeng; 2018 Oct; 126(4):540-545. PubMed ID: 29793863
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A DNA Segregation Module for Synthetic Cells.
    Tran MP; Chatterjee R; Dreher Y; Fichtler J; Jahnke K; Hilbert L; Zaburdaev V; Göpfrich K
    Small; 2023 Mar; 19(13):e2202711. PubMed ID: 35971190
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synthesizing artificial cells from giant unilamellar vesicles: state-of-the art in the development of microfluidic technology.
    Matosevic S
    Bioessays; 2012 Nov; 34(11):992-1001. PubMed ID: 22926929
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multicomponent and Multiphase Lipid Nanotubes Formed by Gliding Microtubule-Kinesin Motility and Phase-Separated Giant Unilamellar Vesicles.
    Imam ZI; Bachand GD
    Langmuir; 2019 Dec; 35(49):16281-16289. PubMed ID: 31730350
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Calcium-Mediated Liposome Fusion to Engineer Giant Lipid Vesicles with Cytosolic Proteins and Reconstituted Mammalian Proteins.
    Schmid YRF; Scheller L; Buchmann S; Dittrich PS
    Adv Biosyst; 2020 Nov; 4(11):e2000153. PubMed ID: 33084207
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.