BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 37337692)

  • 1. Inferring the distributions of fitness effects and proportions of strongly deleterious mutations.
    Charmouh AP; Bocedi G; Hartfield M
    G3 (Bethesda); 2023 Aug; 13(9):. PubMed ID: 37337692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inferring Parameters of the Distribution of Fitness Effects of New Mutations When Beneficial Mutations Are Strongly Advantageous and Rare.
    Booker TR
    G3 (Bethesda); 2020 Jul; 10(7):2317-2326. PubMed ID: 32371451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inference of the Distribution of Selection Coefficients for New Nonsynonymous Mutations Using Large Samples.
    Kim BY; Huber CD; Lohmueller KE
    Genetics; 2017 May; 206(1):345-361. PubMed ID: 28249985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inference of Distribution of Fitness Effects and Proportion of Adaptive Substitutions from Polymorphism Data.
    Tataru P; Mollion M; Glémin S; Bataillon T
    Genetics; 2017 Nov; 207(3):1103-1119. PubMed ID: 28951530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inferring the distribution of mutational effects on fitness in Drosophila.
    Loewe L; Charlesworth B
    Biol Lett; 2006 Sep; 2(3):426-30. PubMed ID: 17148422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comprehensive model of mutations affecting fitness and inferences for Arabidopsis thaliana.
    Shaw FH; Geyer CJ; Shaw RG
    Evolution; 2002 Mar; 56(3):453-63. PubMed ID: 11989677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sex differences in deleterious mutational effects in Drosophila melanogaster: combining quantitative and population genetic insights.
    Ruzicka F; Connallon T; Reuter M
    Genetics; 2021 Nov; 219(3):. PubMed ID: 34740242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inferring the distribution of fitness effects of spontaneous mutations in Chlamydomonas reinhardtii.
    Böndel KB; Kraemer SA; Samuels T; McClean D; Lachapelle J; Ness RW; Colegrave N; Keightley PD
    PLoS Biol; 2019 Jun; 17(6):e3000192. PubMed ID: 31242179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Triallelic Population Genomics for Inferring Correlated Fitness Effects of Same Site Nonsynonymous Mutations.
    Ragsdale AP; Coffman AJ; Hsieh P; Struck TJ; Gutenkunst RN
    Genetics; 2016 May; 203(1):513-23. PubMed ID: 27029732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. polyDFE: Inferring the Distribution of Fitness Effects and Properties of Beneficial Mutations from Polymorphism Data.
    Tataru P; Bataillon T
    Methods Mol Biol; 2020; 2090():125-146. PubMed ID: 31975166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of the Full Distribution of Fitness Effects of New Amino Acid Mutations Across Great Apes.
    Castellano D; Macià MC; Tataru P; Bataillon T; Munch K
    Genetics; 2019 Nov; 213(3):953-966. PubMed ID: 31488516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The distribution of fitness effects of new deleterious amino acid mutations in humans.
    Eyre-Walker A; Woolfit M; Phelps T
    Genetics; 2006 Jun; 173(2):891-900. PubMed ID: 16547091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interference Effects of Deleterious and Beneficial Mutations in Large Asexual Populations.
    Jain K
    Genetics; 2019 Apr; 211(4):1357-1369. PubMed ID: 30700529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The dynamics of adaptation on correlated fitness landscapes.
    Kryazhimskiy S; Tkacik G; Plotkin JB
    Proc Natl Acad Sci U S A; 2009 Nov; 106(44):18638-43. PubMed ID: 19858497
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From Drift to Draft: How Much Do Beneficial Mutations Actually Contribute to Predictions of Ohta's Slightly Deleterious Model of Molecular Evolution?
    Chen J; Glémin S; Lascoux M
    Genetics; 2020 Apr; 214(4):1005-1018. PubMed ID: 32015019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fitness effects of derived deleterious mutations in four closely related wild tomato species with spatial structure.
    Tellier A; Fischer I; Merino C; Xia H; Camus-Kulandaivelu L; Städler T; Stephan W
    Heredity (Edinb); 2011 Sep; 107(3):189-99. PubMed ID: 21245893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Joint inference of the distribution of fitness effects of deleterious mutations and population demography based on nucleotide polymorphism frequencies.
    Keightley PD; Eyre-Walker A
    Genetics; 2007 Dec; 177(4):2251-61. PubMed ID: 18073430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The impact of non-neutral synonymous mutations when inferring selection on non-synonymous mutations.
    Zurita AMI; Kyriazis CC; Lohmueller KE
    bioRxiv; 2024 Feb; ():. PubMed ID: 38370782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A method for inferring the rate of occurrence and fitness effects of advantageous mutations.
    Schneider A; Charlesworth B; Eyre-Walker A; Keightley PD
    Genetics; 2011 Dec; 189(4):1427-37. PubMed ID: 21954160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of new mutations on fitness: insights from models and data.
    Bataillon T; Bailey SF
    Ann N Y Acad Sci; 2014 Jul; 1320(1):76-92. PubMed ID: 24891070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.