These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
347 related articles for article (PubMed ID: 37337738)
1. Greener chemistry in analytical sciences: from green solvents to applications in complex matrices. Current challenges and future perspectives: a critical review. Ražić S; Arsenijević J; Đogo Mračević S; Mušović J; Trtić-Petrović T Analyst; 2023 Jul; 148(14):3130-3152. PubMed ID: 37337738 [TBL] [Abstract][Full Text] [Related]
2. Green analytical chemistry metrics: A review. Sajid M; Płotka-Wasylka J Talanta; 2022 Feb; 238(Pt 2):123046. PubMed ID: 34801903 [TBL] [Abstract][Full Text] [Related]
3. Natural deep eutectic solvents-mediated extractions: The way forward for sustainable analytical developments. Fernández MLÁ; Boiteux J; Espino M; Gomez FJV; Silva MF Anal Chim Acta; 2018 Dec; 1038():1-10. PubMed ID: 30278889 [TBL] [Abstract][Full Text] [Related]
5. Application of Recently used Green Solvents in Sample Preparation Techniques: A Comprehensive Review of Existing Trends, Challenges, and Future Opportunities. Ullah N; Haseeb A; Tuzen M Crit Rev Anal Chem; 2024; 54(8):2714-2733. PubMed ID: 37067946 [TBL] [Abstract][Full Text] [Related]
6. Current green capillary electrophoresis and liquid chromatography methods for analysis of pharmaceutical and biomedical samples (2019-2023) - A review. Jankech T; Gerhardtova I; Stefanik O; Chalova P; Jampilek J; Majerova P; Kovac A; Piestansky J Anal Chim Acta; 2024 Sep; 1323():342889. PubMed ID: 39182966 [TBL] [Abstract][Full Text] [Related]
7. Assessing the Greenness and Environmental Friendliness of Analytical Methods: Modern Approaches and Recent Computational Programs. Semysim FA; Hussain BK; Hussien MA; Azooz EA; Snigur D Crit Rev Anal Chem; 2024 Jan; ():1-14. PubMed ID: 38241068 [TBL] [Abstract][Full Text] [Related]
8. Ionic liquids in green analytical chemistry-are they that good and green enough? Ražić S; Gadžurić S; Trtić-Petrović T Anal Bioanal Chem; 2024 Apr; 416(9):2023-2029. PubMed ID: 37989846 [TBL] [Abstract][Full Text] [Related]
9. Critical overview on the use of hydrophobic (deep) eutectic solvents for the extraction of organic pollutants in complex matrices. Bintanel-Cenis J; Fernández MA; Gómara B; Ramos L Talanta; 2024 Apr; 270():125599. PubMed ID: 38199124 [TBL] [Abstract][Full Text] [Related]
10. Applications of deep eutectic solvents to quantitative analyses of pharmaceuticals and pesticides in various matrices: a brief review. Lee J; Kim H; Kang S; Baik N; Hwang I; Chung DS Arch Pharm Res; 2020 Sep; 43(9):900-919. PubMed ID: 32918704 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of analytical greenness metric for an eco-friendly method developed through the integration of green chemistry and quality-by-design for the simultaneous determination of Nebivolol hydrochloride, Telmisartan, Valsartan, and Amlodipine besylate. Veerendra YVS; Brahman PK; Mankumare SD; Ch J; C VK Heliyon; 2024 Aug; 10(16):e35376. PubMed ID: 39220975 [TBL] [Abstract][Full Text] [Related]
12. Chemical nature evolution of solid supports used in electromembrane extraction procedures: A comparative analysis based on metric tools. Román-Hidalgo C; Villar-Navarro M; Martín-Valero MJ; López-Pérez G Anal Chim Acta; 2024 Aug; 1316():342868. PubMed ID: 38969413 [TBL] [Abstract][Full Text] [Related]
13. Natural Deep Eutectic Solvent-Based Dispersive Liquid-Liquid Microextraction Coupled with Direct Analysis in Real Time Mass Spectrometry: A Green Temperature-Mediated Analytical Strategy. Chen M; Li M; Zhang W; Bai H; Ma Q J Agric Food Chem; 2022 Sep; 70(35):10919-10928. PubMed ID: 36000560 [TBL] [Abstract][Full Text] [Related]
14. The perspectives of natural deep eutectic solvents in agri-food sector. Mišan A; Nađpal J; Stupar A; Pojić M; Mandić A; Verpoorte R; Choi YH Crit Rev Food Sci Nutr; 2020; 60(15):2564-2592. PubMed ID: 31407921 [TBL] [Abstract][Full Text] [Related]
15. Ionic deep eutectic solvents for the extraction and separation of natural products. Huang J; Guo X; Xu T; Fan L; Zhou X; Wu S J Chromatogr A; 2019 Aug; 1598():1-19. PubMed ID: 31005289 [TBL] [Abstract][Full Text] [Related]
16. Sustainable Eco-Friendly Ultra-High-Performance Liquid Chromatographic Method for Simultaneous Determination of Caffeine and Theobromine in Commercial Teas: Evaluation of Greenness Profile Using NEMI and Eco-Scale Assessment Tools. Shaaban H; Mostafa A J AOAC Int; 2018 Nov; 101(6):1781-1787. PubMed ID: 29895351 [No Abstract] [Full Text] [Related]
17. Greening Separation and Purification of Proteins and Peptides. Maráková K J Sep Sci; 2024 Oct; 47(19):e202400554. PubMed ID: 39375913 [TBL] [Abstract][Full Text] [Related]
18. From capillaries to microchips, green electrophoretic features for enantiomeric separations: A decade review (2013-2022). Aredes RS; Lima IP; Faillace AP; Madriaga VGC; Lima TM; Vaz FAS; Marques FFC; Duarte LM Electrophoresis; 2023 Oct; 44(19-20):1471-1518. PubMed ID: 37667860 [TBL] [Abstract][Full Text] [Related]
19. A Critical Review of Emerging Hydrophobic Deep Eutectic Solvents' Applications in Food Chemistry: Trends and Opportunities. Boateng ID J Agric Food Chem; 2022 Sep; 70(38):11860-11879. PubMed ID: 36099559 [TBL] [Abstract][Full Text] [Related]
20. The ecological impact of liquid chromatographic methods reported for bioanalysis of COVID-19 drug, hydroxychloroquine: Insights on greenness assessment. Shaaban H Microchem J; 2023 Jan; 184():108145. PubMed ID: 36404889 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]