These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 37337832)

  • 41. Ultrafast charge separation and long-lived charge separated state in photocatalytic CdS-Pt nanorod heterostructures.
    Wu K; Zhu H; Liu Z; Rodríguez-Córdoba W; Lian T
    J Am Chem Soc; 2012 Jun; 134(25):10337-40. PubMed ID: 22655858
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Semiconductor-based nanocomposites for photocatalytic H2 production and CO2 conversion.
    Fan W; Zhang Q; Wang Y
    Phys Chem Chem Phys; 2013 Feb; 15(8):2632-49. PubMed ID: 23322026
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Efficient Exciton Dissociation through the Edge Interfacial State in Metal Halide Perovskite-Based Photocatalysts.
    Xue J; Jiang S; Wang Z; Jiang Z; Cao H; Zhu X; Zhang Q; Luo Y; Bao J
    J Phys Chem Lett; 2023 Feb; 14(6):1504-1511. PubMed ID: 36745060
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Triclinic-Phase Bismuth Chromate: A Promising Candidate for Photocatalytic Water Splitting with Broad Spectrum Ranges.
    Tao X; Zhou H; Zhang C; Ta N; Li R; Li C
    Adv Mater; 2023 Apr; 35(15):e2211182. PubMed ID: 36779436
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Metal-Organic Frameworks for Photocatalysis and Photothermal Catalysis.
    Xiao JD; Jiang HL
    Acc Chem Res; 2019 Feb; 52(2):356-366. PubMed ID: 30571078
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Singlet exciton fission photovoltaics.
    Lee J; Jadhav P; Reusswig PD; Yost SR; Thompson NJ; Congreve DN; Hontz E; Van Voorhis T; Baldo MA
    Acc Chem Res; 2013 Jun; 46(6):1300-11. PubMed ID: 23611026
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Solar fuels via artificial photosynthesis.
    Gust D; Moore TA; Moore AL
    Acc Chem Res; 2009 Dec; 42(12):1890-8. PubMed ID: 19902921
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Interfacial Engineering of Semicoherent Interface at Purified CsPbBr
    Zhang G; Ke X; Liu X; Liao H; Wang W; Yu H; Wang K; Yang S; Tu C; Gu H; Luo D; Huang L; Zhang M
    ACS Appl Mater Interfaces; 2022 Oct; 14(39):44909-44921. PubMed ID: 36150167
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Functionalized nanostructures for enhanced photocatalytic performance under solar light.
    Guo L; Jing D; Liu M; Chen Y; Shen S; Shi J; Zhang K
    Beilstein J Nanotechnol; 2014; 5():994-1004. PubMed ID: 25161835
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting.
    Osterloh FE
    Chem Soc Rev; 2013 Mar; 42(6):2294-320. PubMed ID: 23072874
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Harvesting solar energy by means of charge-separating nanocrystals and their solids.
    Diederich G; O'Connor T; Moroz P; Kinder E; Kohn E; Perera D; Lorek R; Lambright S; Imboden M; Zamkov M
    J Vis Exp; 2012 Aug; (66):e4296. PubMed ID: 22951526
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Multiple exciton generation and recombination in carbon nanotubes and nanocrystals.
    Kanemitsu Y
    Acc Chem Res; 2013 Jun; 46(6):1358-66. PubMed ID: 23421584
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Directional Damping of Plasmons at Metal-Semiconductor Interfaces.
    Liu G; Lou Y; Zhao Y; Burda C
    Acc Chem Res; 2022 Jul; 55(13):1845-1856. PubMed ID: 35696292
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Development of Mixed-Anion Photocatalysts with Wide Visible-Light Absorption Bands for Solar Water Splitting.
    Cui J; Li C; Zhang F
    ChemSusChem; 2019 May; 12(9):1872-1888. PubMed ID: 30211984
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Black Phosphorus-Based Semiconductor Heterojunctions for Photocatalytic Water Splitting.
    Liu F; Huang C; Liu CX; Shi R; Chen Y
    Chemistry; 2020 Apr; 26(20):4449-4460. PubMed ID: 31710131
    [TBL] [Abstract][Full Text] [Related]  

  • 56. One-dimensional hybrid nanostructures for heterogeneous photocatalysis and photoelectrocatalysis.
    Xiao FX; Miao J; Tao HB; Hung SF; Wang HY; Yang HB; Chen J; Chen R; Liu B
    Small; 2015 May; 11(18):2115-31. PubMed ID: 25641821
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances.
    Wang H; Zhang L; Chen Z; Hu J; Li S; Wang Z; Liu J; Wang X
    Chem Soc Rev; 2014 Aug; 43(15):5234-44. PubMed ID: 24841176
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Defect Engineering in 0D/2D S-Scheme Heterojunction Photocatalysts for Water Activation: Synergistic Roles of Nickel Doping and Oxygen Vacancy.
    Bi F; Meng Q; Zhang Y; Weng X; Wu Z
    ACS Appl Mater Interfaces; 2023 Jul; 15(26):31409-31420. PubMed ID: 37353473
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Modulating Local Charge Distribution of Carbon Nitride for Promoting Exciton Dissociation and Charge-Induced Reactions.
    Chen G; Zhang ZD; Liao YX; Zhang Z; You YZ
    Small; 2021 Aug; 17(32):e2100698. PubMed ID: 34197025
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Photocatalytic Carbon Dioxide Conversion by Structurally and Materially Modified Titanium Dioxide Nanostructures.
    Fawzi T; Rani S; Roy SC; Lee H
    Int J Mol Sci; 2022 Jul; 23(15):. PubMed ID: 35897719
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.