These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 37338259)
41. Autonomous dynamic obstacle avoidance for bacteria-powered microrobots (BPMs) with modified vector field histogram. Kim H; Cheang UK; Kim MJ PLoS One; 2017; 12(10):e0185744. PubMed ID: 29020016 [TBL] [Abstract][Full Text] [Related]
42. Construction and operation of a microrobot based on magnetotactic bacteria in a microfluidic chip. Ma Q; Chen C; Wei S; Chen C; Wu LF; Song T Biomicrofluidics; 2012 Jun; 6(2):24107-2410712. PubMed ID: 22655018 [TBL] [Abstract][Full Text] [Related]
44. Robust Control Strategy of Gradient Magnetic Drive for Microrobots Based on Extended State Observer. Lu J; Liu Y; Huang W; Bi K; Zhu Y; Fan Q Cyborg Bionic Syst; 2022; 2022():9835014. PubMed ID: 36320320 [TBL] [Abstract][Full Text] [Related]
45. Biohybrid Magnetic Microrobots for Tumor Assassination and Active Tissue Regeneration. Liu D; Zhang T; Guo Y; Liao Y; Wu Z; Jiang H; Lu Y ACS Appl Bio Mater; 2022 Dec; 5(12):5933-5942. PubMed ID: 36384280 [TBL] [Abstract][Full Text] [Related]
46. Cellular Manipulation Using Rolling Microrobots. Rivas D; Mallick S; Sokolich M; Das S Int Conf Manip Autom Robot Small Scales; 2022 Jul; 2022():. PubMed ID: 37663239 [TBL] [Abstract][Full Text] [Related]
47. Soft Capsule Magnetic Millirobots for Region-Specific Drug Delivery in the Central Nervous System. Mair LO; Adam G; Chowdhury S; Davis A; Arifin DR; Vassoler FM; Engelhard HH; Li J; Tang X; Weinberg IN; Evans EE; Bulte JWM; Cappelleri DJ Front Robot AI; 2021; 8():702566. PubMed ID: 34368238 [TBL] [Abstract][Full Text] [Related]
48. Multistimuli-Responsive Hydroplaning Superhydrophobic Microrobots with Programmable Motion and Multifunctional Applications. Wang X; Lin D; Zhou Y; Jiao N; Tung S; Liu L ACS Nano; 2022 Sep; 16(9):14895-14906. PubMed ID: 36067035 [TBL] [Abstract][Full Text] [Related]
49. Magnetic-Controlled Microrobot: Real-Time Detection and Tracking through Deep Learning Approaches. Li H; Yi X; Zhang Z; Chen Y Micromachines (Basel); 2024 Jun; 15(6):. PubMed ID: 38930726 [TBL] [Abstract][Full Text] [Related]
50. Magnetic Hydrogel Microrobots as Insecticide Carriers for In Vivo Insect Pest Control in Plants. Maria-Hormigos R; Mayorga-Martinez CC; Pumera M Small; 2023 Dec; 19(51):e2204887. PubMed ID: 36585370 [TBL] [Abstract][Full Text] [Related]
51. Microrobots: a new era in ocular drug delivery. Fusco S; Ullrich F; Pokki J; Chatzipirpiridis G; Özkale B; Sivaraman KM; Ergeneman O; Pané S; Nelson BJ Expert Opin Drug Deliv; 2014 Nov; 11(11):1815-26. PubMed ID: 25001411 [TBL] [Abstract][Full Text] [Related]
52. Closed-loop Control for a Heterogeneous Group of Magnetically-actuated Microrobots. Beaver LE; Shah ZH; Sokolich M; Yilmaz AE; Yang Y; Belta C; Das S Int Conf Manip Autom Robot Small Scales; 2023 Oct; 2023():. PubMed ID: 39421402 [TBL] [Abstract][Full Text] [Related]
53. Bioinspired claw-engaged and biolubricated swimming microrobots creating active retention in blood vessels. Li T; Yu S; Sun B; Li Y; Wang X; Pan Y; Song C; Ren Y; Zhang Z; Grattan KTV; Wu Z; Zhao J Sci Adv; 2023 May; 9(18):eadg4501. PubMed ID: 37146139 [TBL] [Abstract][Full Text] [Related]
54. Environmentally Adaptive Shape-Morphing Microrobots for Localized Cancer Cell Treatment. Xin C; Jin D; Hu Y; Yang L; Li R; Wang L; Ren Z; Wang D; Ji S; Hu K; Pan D; Wu H; Zhu W; Shen Z; Wang Y; Li J; Zhang L; Wu D; Chu J ACS Nano; 2021 Nov; 15(11):18048-18059. PubMed ID: 34664936 [TBL] [Abstract][Full Text] [Related]
55. Development of Magnet-Driven and Image-Guided Degradable Microrobots for the Precise Delivery of Engineered Stem Cells for Cancer Therapy. Wei T; Liu J; Li D; Chen S; Zhang Y; Li J; Fan L; Guan Z; Lo CM; Wang L; Man K; Sun D Small; 2020 Oct; 16(41):e1906908. PubMed ID: 32954642 [TBL] [Abstract][Full Text] [Related]
56. Acoustically Mediated Controlled Drug Release and Targeted Therapy with Degradable 3D Porous Magnetic Microrobots. Park J; Kim JY; Pané S; Nelson BJ; Choi H Adv Healthc Mater; 2021 Jan; 10(2):e2001096. PubMed ID: 33111498 [TBL] [Abstract][Full Text] [Related]
57. Bioinspired microrobots: Opportunities and challenges in targeted cancer therapy. Singh AK; Awasthi R; Malviya R J Control Release; 2023 Feb; 354():439-452. PubMed ID: 36669531 [TBL] [Abstract][Full Text] [Related]
58. Fabrication and wireless micromanipulation of magnetic-biocompatible microrobots using microencapsulation for microrobotics and microfluidics applications. Li H; Zhang J; Zhang N; Kershaw J; Wang L J Microencapsul; 2016 Dec; 33(8):712-717. PubMed ID: 27632892 [TBL] [Abstract][Full Text] [Related]
59. Interactive and synergistic behaviours of multiple heterogeneous microrobots. Zhu S; Zheng W; Wang J; Fang X; Zhang L; Niu F; Wang Y; Luo T; Liu G; Yang R Lab Chip; 2022 Sep; 22(18):3412-3423. PubMed ID: 35880648 [TBL] [Abstract][Full Text] [Related]
60. Magnetically-propelled hydrogel particle motors produced by ultrasound assisted hydrodynamic electrospray ionization jetting. Rutkowski S; Mu L; Si T; Gai M; Sun M; Frueh J; He Q Colloids Surf B Biointerfaces; 2019 Mar; 175():44-55. PubMed ID: 30517904 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]