These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 37338554)

  • 1. Fully automated segmentation and radiomics feature extraction of hypopharyngeal cancer on MRI using deep learning.
    Lin YC; Lin G; Pandey S; Yeh CH; Wang JJ; Lin CY; Ho TY; Ko SF; Ng SH
    Eur Radiol; 2023 Sep; 33(9):6548-6556. PubMed ID: 37338554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning for fully automated tumor segmentation and extraction of magnetic resonance radiomics features in cervical cancer.
    Lin YC; Lin CH; Lu HY; Chiang HJ; Wang HK; Huang YT; Ng SH; Hong JH; Yen TC; Lai CH; Lin G
    Eur Radiol; 2020 Mar; 30(3):1297-1305. PubMed ID: 31712961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated MRI liver segmentation for anatomical segmentation, liver volumetry, and the extraction of radiomics.
    Gross M; Huber S; Arora S; Ze'evi T; Haider SP; Kucukkaya AS; Iseke S; Kuhn TN; Gebauer B; Michallek F; Dewey M; Vilgrain V; Sartoris R; Ronot M; Jaffe A; Strazzabosco M; Chapiro J; Onofrey JA
    Eur Radiol; 2024 Aug; 34(8):5056-5065. PubMed ID: 38217704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep learning-based automatic segmentation of meningioma from multiparametric MRI for preoperative meningioma differentiation using radiomic features: a multicentre study.
    Chen H; Li S; Zhang Y; Liu L; Lv X; Yi Y; Ruan G; Ke C; Feng Y
    Eur Radiol; 2022 Oct; 32(10):7248-7259. PubMed ID: 35420299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning-based multimodal segmentation of oropharyngeal squamous cell carcinoma on CT and MRI using self-configuring nnU-Net.
    Choi Y; Bang J; Kim SY; Seo M; Jang J
    Eur Radiol; 2024 Aug; 34(8):5389-5400. PubMed ID: 38243135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple U-Net-Based Automatic Segmentations and Radiomics Feature Stability on Ultrasound Images for Patients With Ovarian Cancer.
    Jin J; Zhu H; Zhang J; Ai Y; Zhang J; Teng Y; Xie C; Jin X
    Front Oncol; 2020; 10():614201. PubMed ID: 33680934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CT-based deep learning segmentation of ovarian cancer and the stability of the extracted radiomics features.
    Wang Y; Wang M; Cao P; Wong EMF; Ho G; Lam TPW; Han L; Lee EYP
    Quant Imaging Med Surg; 2023 Aug; 13(8):5218-5229. PubMed ID: 37581064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic segmentation of bladder cancer on MRI using a convolutional neural network and reproducibility of radiomics features: a two-center study.
    Moribata Y; Kurata Y; Nishio M; Kido A; Otani S; Himoto Y; Nishio N; Furuta A; Onishi H; Masui K; Kobayashi T; Nakamoto Y
    Sci Rep; 2023 Jan; 13(1):628. PubMed ID: 36635425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Accuracy and Radiomics Feature Effects of Multiple U-net-Based Automatic Segmentation Models for Transvaginal Ultrasound Images of Cervical Cancer.
    Jin J; Zhu H; Teng Y; Ai Y; Xie C; Jin X
    J Digit Imaging; 2022 Aug; 35(4):983-992. PubMed ID: 35355160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Postoperative glioma segmentation in CT image using deep feature fusion model guided by multi-sequence MRIs.
    Tang F; Liang S; Zhong T; Huang X; Deng X; Zhang Y; Zhou L
    Eur Radiol; 2020 Feb; 30(2):823-832. PubMed ID: 31650265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reproducibility of F18-FDG PET radiomic features for different cervical tumor segmentation methods, gray-level discretization, and reconstruction algorithms.
    Altazi BA; Zhang GG; Fernandez DC; Montejo ME; Hunt D; Werner J; Biagioli MC; Moros EG
    J Appl Clin Med Phys; 2017 Nov; 18(6):32-48. PubMed ID: 28891217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-stage deep learning model for fully automated pancreas segmentation on computed tomography: Comparison with intra-reader and inter-reader reliability at full and reduced radiation dose on an external dataset.
    Panda A; Korfiatis P; Suman G; Garg SK; Polley EC; Singh DP; Chari ST; Goenka AH
    Med Phys; 2021 May; 48(5):2468-2481. PubMed ID: 33595105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Medical image recognition and segmentation of pathological slices of gastric cancer based on Deeplab v3+ neural network.
    Wang J; Liu X
    Comput Methods Programs Biomed; 2021 Aug; 207():106210. PubMed ID: 34130088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Logistic Regression-Based Model Is More Efficient Than U-Net Model for Reliable Whole Brain Magnetic Resonance Imaging Segmentation.
    Dieckhaus H; Meijboom R; Okar S; Wu T; Parvathaneni P; Mina Y; Chandran S; Waldman AD; Reich DS; Nair G
    Top Magn Reson Imaging; 2022 Jun; 31(3):31-39. PubMed ID: 35767314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radiomics as a measure superior to common similarity metrics for tumor segmentation performance evaluation.
    Akramova R; Watanabe Y
    J Appl Clin Med Phys; 2024 Aug; 25(8):e14442. PubMed ID: 38922790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. IDH1 mutation prediction using MR-based radiomics in glioblastoma: comparison between manual and fully automated deep learning-based approach of tumor segmentation.
    Choi Y; Nam Y; Lee YS; Kim J; Ahn KJ; Jang J; Shin NY; Kim BS; Jeon SS
    Eur J Radiol; 2020 Jul; 128():109031. PubMed ID: 32417712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep learning-based automatic segmentation of meningioma from T1-weighted contrast-enhanced MRI for preoperative meningioma differentiation using radiomic features.
    Yang L; Wang T; Zhang J; Kang S; Xu S; Wang K
    BMC Med Imaging; 2024 Mar; 24(1):56. PubMed ID: 38443817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A deep-learning approach for segmentation of liver tumors in magnetic resonance imaging using UNet+.
    Wang J; Peng Y; Jing S; Han L; Li T; Luo J
    BMC Cancer; 2023 Nov; 23(1):1060. PubMed ID: 37923988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated segmentation of craniopharyngioma on MR images using U-Net-based deep convolutional neural network.
    Chen C; Zhang T; Teng Y; Yu Y; Shu X; Zhang L; Zhao F; Xu J
    Eur Radiol; 2023 Apr; 33(4):2665-2675. PubMed ID: 36396792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physics-Informed Discretization for Reproducible and Robust Radiomic Feature Extraction Using Quantitative MRI.
    Zhao W; Hu Z; Kazerooni AF; Körzdörfer G; Nittka M; Davatzikos C; Viswanath SE; Wang X; Badve C; Ma D
    Invest Radiol; 2024 May; 59(5):359-371. PubMed ID: 37812483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.